Description Usage Arguments Details Value Author(s) References See Also Examples
Combining DDPCA with orthodox Higher Criticism for detecting sparse mean effect.
| 1 2 3 | 
| X | A n\times p data matrix, where each row is drawn i.i.d from \mathcal{N}(μ,Σ) | 
| known_Sigma | The true covariance matrix of data. Default NA. If NA, then Σ will be estimated from data matrix X. | 
| method | Either "convex" or "noncovex", indicating which method to use for DDPCA. | 
| K | Argument in function  | 
| lambda | Argument in function  | 
| max_iter_nonconvex | Argument in function  | 
| SDD_approx | Argument in function  | 
| max_iter_SDD | Argument in function  | 
| eps | Argument in function  | 
| rho | Argument in function  | 
| max_iter_convex | Argument in function  | 
| alpha | Argument in function  | 
| pvalcut | Argument in function  | 
See reference paper for more details.
Returns a list containing the following items
| H | 0 or 1 scalar indicating whether H_0 the global null is rejected (1) or not rejected (0). The use of  | 
| HCT | DD-HC Test statistic | 
Fan Yang <fyang1@uchicago.edu>
Ke, Z., Xue, L. and Yang, F., 2019. Diagonally Dominant Principal Component Analysis. Journal of Computational and Graphic Statistics, under review.
IHCDD, HCdetection, DDPCA_convex, DDPCA_nonconvex
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | library(MASS)
n = 200
p = 200
k = 3
rho = 0.5
a = 0:(p-1)
Sigma_mu = rho^abs(outer(a,a,'-'))
Sigma_mu = (diag(p) + Sigma_mu)/2 # Now Sigma_mu is a symmetric diagonally dominant matrix
B = matrix(rnorm(p*k),nrow = p)
Sigma = Sigma_mu + B %*% t(B)
X = mvrnorm(n,rep(0,p),Sigma)
results = DDHC(X,K = k)
print(results$H)
print(results$HCT)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.