Description Usage Arguments Details Value Author(s) References See Also Examples
Combining DDPCA with orthodox Higher Criticism for detecting sparse mean effect.
1 2 3 |
X |
A n\times p data matrix, where each row is drawn i.i.d from \mathcal{N}(μ,Σ) |
known_Sigma |
The true covariance matrix of data. Default NA. If NA, then Σ will be estimated from data matrix X. |
method |
Either "convex" or "noncovex", indicating which method to use for DDPCA. |
K |
Argument in function |
lambda |
Argument in function |
max_iter_nonconvex |
Argument in function |
SDD_approx |
Argument in function |
max_iter_SDD |
Argument in function |
eps |
Argument in function |
rho |
Argument in function |
max_iter_convex |
Argument in function |
alpha |
Argument in function |
pvalcut |
Argument in function |
See reference paper for more details.
Returns a list containing the following items
H |
0 or 1 scalar indicating whether H_0 the global null is rejected (1) or not rejected (0). The use of |
HCT |
DD-HC Test statistic |
Fan Yang <fyang1@uchicago.edu>
Ke, Z., Xue, L. and Yang, F., 2019. Diagonally Dominant Principal Component Analysis. Journal of Computational and Graphic Statistics, under review.
IHCDD
, HCdetection
, DDPCA_convex
, DDPCA_nonconvex
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | library(MASS)
n = 200
p = 200
k = 3
rho = 0.5
a = 0:(p-1)
Sigma_mu = rho^abs(outer(a,a,'-'))
Sigma_mu = (diag(p) + Sigma_mu)/2 # Now Sigma_mu is a symmetric diagonally dominant matrix
B = matrix(rnorm(p*k),nrow = p)
Sigma = Sigma_mu + B %*% t(B)
X = mvrnorm(n,rep(0,p),Sigma)
results = DDHC(X,K = k)
print(results$H)
print(results$HCT)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.