timelags | R Documentation |
Functions lagvalue
and lagderiv
provide access to past
(lagged) values of state variables and derivatives.
They are to be used with function dede
, to solve delay differential
equations.
lagvalue(t, nr)
lagderiv(t, nr)
t |
the time for which the lagged value is wanted; this should be no larger than the current simulation time and no smaller than the initial simulation time. |
nr |
the number of the lagged value; if |
The lagvalue
and lagderiv
can only be called during the
integration, the lagged time should not be smaller than the initial
simulation time, nor should it be larger than the current simulation
time.
Cubic Hermite interpolation is used to obtain an accurate interpolant at the requested lagged time.
a scalar (or vector) with the lagged value(s).
Karline Soetaert <karline.soetaert@nioz.nl>
dede, for how to implement delay differential equations.
## =============================================================================
## exercise 6 from Shampine and Thompson, 2000
## solving delay differential equations with dde23
##
## two lag values
## =============================================================================
##-----------------------------
## the derivative function
##-----------------------------
derivs <- function(t, y, parms) {
History <- function(t) c(cos(t), sin(t))
if (t < 1)
lag1 <- History(t - 1)[1]
else
lag1 <- lagvalue(t - 1)[1] # returns a vector; select first element
if (t < 2)
lag2 <- History(t - 2)[2]
else
lag2 <- lagvalue(t - 2,2) # faster than lagvalue(t - 2)[2]
dy1 <- lag1 * lag2
dy2 <- -y[1] * lag2
list(c(dy1, dy2), lag1 = lag1, lag2 = lag2)
}
##-----------------------------
## parameters
##-----------------------------
r <- 3.5; m <- 19
##-----------------------------
## initial values and times
##-----------------------------
yinit <- c(y1 = 0, y2 = 0)
times <- seq(0, 20, by = 0.01)
##-----------------------------
## solve the model
##-----------------------------
yout <- dede(y = yinit, times = times, func = derivs,
parms = NULL, atol = 1e-9)
##-----------------------------
## plot results
##-----------------------------
plot(yout, type = "l", lwd = 2)
## =============================================================================
## The predator-prey model with time lags, from Hale
## problem 1 from Shampine and Thompson, 2000
## solving delay differential equations with dde23
##
## a vector with lag valuess
## =============================================================================
##-----------------------------
## the derivative function
##-----------------------------
predprey <- function(t, y, parms) {
tlag <- t - 1
if (tlag < 0)
ylag <- c(80, 30)
else
ylag <- lagvalue(tlag) # returns a vector
dy1 <- a * y[1] * (1 - y[1]/m) + b * y[1] * y[2]
dy2 <- c * y[2] + d * ylag[1] * ylag[2]
list(c(dy1, dy2))
}
##-----------------------------
## parameters
##-----------------------------
a <- 0.25; b <- -0.01; c <- -1 ; d <- 0.01; m <- 200
##-----------------------------
## initial values and times
##-----------------------------
yinit <- c(y1 = 80, y2 = 30)
times <- seq(0, 100, by = 0.01)
#-----------------------------
# solve the model
#-----------------------------
yout <- dede(y = yinit, times = times, func = predprey, parms = NULL)
##-----------------------------
## display, plot results
##-----------------------------
plot(yout, type = "l", lwd = 2, main = "Predator-prey model", mfrow = c(2, 2))
plot(yout[,2], yout[,3], xlab = "y1", ylab = "y2", type = "l", lwd = 2)
diagnostics(yout)
## =============================================================================
##
## A neutral delay differential equation (lagged derivative)
## y't = -y'(t-1), y(t) t < 0 = 1/t
##
## =============================================================================
##-----------------------------
## the derivative function
##-----------------------------
derivs <- function(t, y, parms) {
tlag <- t - 1
if (tlag < 0)
dylag <- -1
else
dylag <- lagderiv(tlag)
list(c(dy = -dylag), dylag = dylag)
}
##-----------------------------
## initial values and times
##-----------------------------
yinit <- 0
times <- seq(0, 4, 0.001)
##-----------------------------
## solve the model
##-----------------------------
yout <- dede(y = yinit, times = times, func = derivs, parms = NULL)
##-----------------------------
## display, plot results
##-----------------------------
plot(yout, type = "l", lwd = 2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.