decorrelate | R Documentation |
Efficient decorrelation projection using eclairs decomposition
decorrelate(X, ecl, lambda, transpose = FALSE, alpha = -1/2)
X |
matrix to be transformed so *columns* are independent |
ecl |
estimate of covariance/correlation matrix from eclairs storing |
lambda |
specify lambda and override value from |
transpose |
logical, (default FALSE) indicating if X should be transposed first |
alpha |
default = -1/2. Exponent of eigen-values |
Apply a decorrelation transform using the implicit covariance approach to avoid directly evaluating the covariance matrix
a matrix following the decorrelation transformation
library(Rfast)
n <- 800 # number of samples
p <- 200 # number of features
# create correlation matrix
Sigma <- autocorr.mat(p, .9)
# draw data from correlation matrix Sigma
Y <- rmvnorm(n, rep(0, p), sigma = Sigma * 5.1, seed = 1)
# eclairs decomposition
ecl <- eclairs(Y)
# whitened Y
Y.transform <- decorrelate(Y, ecl)
#
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.