fastcca | R Documentation |
Fast Canonical correlation analysis that is scalable to high dimensional data. Uses covariance shrinkage and algorithmic speed ups to be linear time in p when p > n.
fastcca(X, Y, k = min(dim(X), dim(Y)), lambda.x = NULL, lambda.y = NULL)
X |
first matrix (n x p1) |
Y |
first matrix (n x p2) |
k |
number of canonical components to return |
lambda.x |
optional shrinkage parameter for estimating covariance of X. If NULL, estimate from data. |
lambda.y |
optional shrinkage parameter for estimating covariance of Y. If NULL, estimate from data. |
summary statistics of CCA
Results from standard CCA are based on the SVD of \Sigma_{xx}^{-\frac{1}{2}} \Sigma_{xy} \Sigma_{yy}^{-\frac{1}{2}}
.
Uses eclairs()
and empirical Bayes covariance regularization, and applies speed up of RCCA (Tuzhilina, et al. 2023) to perform CCA on n PCs and instead of p features. Memory usage is \mathcal{O}(np)
instead of \mathcal{O}(p^2)
. Computation is \mathcal{O}(n^2p)
instead of \mathcal{O}(p^3)
or \mathcal{O}(np^2)
fastcca
object
Tuzhilina, E., Tozzi, L., & Hastie, T. (2023). Canonical correlation analysis in high dimensions with structured regularization. Statistical modelling, 23(3), 203-227.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.