Nothing
# context("Random Effects")
#
# test_that("check loss", {
#
# n <- 1000
# g <- 10
#
# data = data.frame(matrix(rnorm(4*n), c(n,4)))
# colnames(data) <- c("x1","x2","x3","xa")
# data$cat <- gl(g,n/g)
#
# formula_lin <- ~ 1 + x1 + cat
# formula_ri <- ~ 1 + x1 + ri(cat)
#
# re_var <- 2
#
# b <- rnorm(g, sd = sqrt(re_var))
#
# y <- rnorm(n) + 1 + data$x1 + rep(b, each = n/g)
# data$y <- y
#
# data <- data[sample(1:nrow(data)),]
# y <- data$y
#
#
# mod_lin <- deepregression(
# list_of_formulas = list(loc = formula_lin, scale = ~ 1),
# data = data, y = y
# )
#
# mod_lin %>% fit(epochs = 5000, early_stopping = TRUE)
#
# # mod_lin %>% coef()
#
# mod_ri <- deepregression(
# list_of_formulas = list(loc = formula_ri, scale = ~ 1),
# data = data, y = y
# )
#
# mod_ri %>% fit(epochs = 5000, early_stopping = TRUE)
#
# # mod_ri$model$weights
# # mod_ri %>% coef()
#
# optm <- optimizer_adam
# lr <- 1e-5
#
# # define MDMM optimizer
# optimizers = list(
# optm(learning_rate=lr),
# optm(learning_rate=-lr)
# )
#
# optimizer <- function(model){
#
# all_weights_but_variance <- c(model$layers[1:4],
# model$layers[6:length(model$layers)])
#
#
# optimizers_and_layers = list(tuple(optimizers[[1]], all_weights_but_variance),
# tuple(optimizers[[2]], model$layers[5]))
# optimizer = multioptimizer(optimizers_and_layers)
# return(optimizer)
# }
#
# mod_ri <- deepregression(
# list_of_formulas = list(loc = formula_ri, scale = ~ 1),
# data = data, y = y,
# optimizer = optimizer
# )
#
# mod_ri %>% fit(epochs = 5000,
# early_stopping = TRUE,
# patience = 50)
#
# exp(mod_ri$model$weights[[3]])^2
# sum(mod_ri$model$weights[[2]]$numpy())
# sapply(mod_ri$model$weights[c(4,1,5)], function(x) x$numpy())
# exp(mod_ri$model$weights[[5]]$numpy())
#
# mod_gam <- mgcv::gam(y ~ 1 + x1 + s(cat, bs = "re"), data = data)
# gam.vcomp(mod_gam)
# coef(mod_gam)[1:2]
#
# plot(coef(mod_gam)[-1*1:2] ~ mod_ri$model$weights[[2]]$numpy())
#
# })
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.