Nothing
#### New method of summary for ForestTrain ####
#' @export
summary.ForestTrain <- function(object, ...){
list(call = object$call,
acc = object$acc,
tp = object$tp,
fp = object$fp,
tn = object$tn,
fn = object$fn
)
}
#### New generic classify for ForestTrainParam ####
#' Classify parts of images as forest / non-forest
#'
#' Generic function classify dispatches methods according to the class of object Model.
#' A chosen method takes raster object data and classifies parts of it as 1- forest or 0- non-forest.
#'
#' Both classify.ForestTrainParam and classify.ForestTrainNonParam use parameter n_pts to split images
#' into square sub-frames of the size n_pts. Those sub-frames are classified independently and all pixels
#' from a sub-frame are tagged according to its classification result. When the image contained by data
#' is of dimensions that are not divisible by n_pts, it is truncated from the right and the bottom to
#' to make the largest divisible one. Thus, the result of classification can be of a different size than
#' the original image.
#'
#' @param Model trained model, e.g. by \code{\link{train}}
#' @param data raster object. \code{\link{read_data_raster}}
#' @param n_pts size of sub-frames into which data is split
#' @param parallel Boolean. Whether to use parallel setup
#' @param progress progress bar. Works only when parallel=FALSE. Could be set to 'text' or 'none'
#' @param ... additional parameters passed to methods
#'
#' @return a black-and-white image of the terrain data where white represents forest and black is for non-forest.
#'
#' @examples
#' library(deforestable)
#' n_pts <- 20
#'
#' # Choosing folders with training data
#' Forestdir <- system.file('extdata/Forest/', package = "deforestable")
#' Nonforestdir <- system.file('extdata/Non-forest/', package = "deforestable")
#'
#' #### Read the target image ####
#' tg_dir <- system.file('extdata/', package = "deforestable")
#' test_image <- read_data_raster('smpl_1.jpeg', dir = tg_dir)
#'
#'
#' # Simple training of the non-parametric model
#' Model_nonP_tr <- train(model='fr_Non-Param', Forestdir=Forestdir, Nonforestdir=Nonforestdir,
#' train_method='train', parallel=FALSE)
#'
#' res <- classify(data=test_image, Model=Model_nonP_tr,
#' n_pts=n_pts, parallel=FALSE, progress = 'text')
#'
#' tmp_d <- tempdir(); tmp_d
#' jpeg::writeJPEG(image=res, target=paste(tmp_d,'Model_nonP_tr.jpeg', sep='/'))
#'
#' @export
classify <- function(Model, ...) {
UseMethod("classify")
}
#### New method classify for ForestTrain ####
# res <- classify(data=test_image, Model=ParModel, n_pts=10, parallel=FALSE, progress = 'text')
# jpeg::writeJPEG(image=res, target='Partest_im.jpeg')
#' @describeIn classify Method for the class ForestTrainParam
#' @export
classify.ForestTrainParam <- function(Model, data, n_pts, parallel=FALSE, progress = "text", ...){
Param_classifier(rastData = data, n_pts=n_pts, Model = Model,
parallel = parallel, progress = progress)
}
# res <- classify(data=test_image, Model=ParModel, n_pts=10, parallel=FALSE, progress = 'text')
# jpeg::writeJPEG(image=res, target='NonPartest_im.jpeg')
#' @describeIn classify Method for the class ForestTrainNonParam
#' @export
classify.ForestTrainNonParam <- function(Model, data, n_pts, parallel=FALSE, progress = "text", ...){
Nonparam_classifier(rastData = data, n_pts=n_pts, Model = Model,
parallel = parallel, progress = progress)
}
#' S3 class ForestTrain
#'
#'
#' Class ForestTrain is the main class to contain models for binary classification forest/non-forest.
#' It includes the following elements:
#'
#' @section Slots:
#'
#' | Element | Description |
#' | --- | --- |
#' | call | the function call with which it was created |
#' | tp | the number of true positives obtained during training |
#' | fp | the number of false positives obtained during training |
#' | tn | the number of true negatives obtained during training |
#' | fn | the number of false negatives obtained during training |
#' @md
#'
#' @details In most cases objects of this class are generated by function \code{\link{train}}.
#' Then, classification of terrain images is made by \code{\link{classify}}.
#' @name Class_ForestTrain
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.