Nothing
library(deforestable)
test_that("NonParamTrain works on data it was trained on", {
n_pts <- 20
# Choosing folders with training data
Forestdir <- system.file('extdata/Forest/', package = "deforestable")
Nonforestdir <- system.file('extdata/Non-forest/', package = "deforestable")
Model_nonP_tr <- train(model='fr_Non-Param', Forestdir=Forestdir, Nonforestdir=Nonforestdir,
train_method='train', parallel=FALSE)
# forest image 1
test_image <- read_data_raster('_10_1_.jpeg', dir = Forestdir)
res <- classify(data=test_image, Model=Model_nonP_tr,
n_pts=n_pts, parallel=FALSE, progress = 'none')
expect_equal(sum(res), 400)
# forest image 2
test_image <- read_data_raster('_10_46_.jpeg', dir = Forestdir)
res <- classify(data=test_image, Model=Model_nonP_tr,
n_pts=n_pts, parallel=FALSE, progress = 'none')
expect_equal(sum(res), 400)
# forest image 3
test_image <- read_data_raster('_13_79_.jpeg', dir = Forestdir)
res <- classify(data=test_image, Model=Model_nonP_tr,
n_pts=n_pts, parallel=FALSE, progress = 'none')
expect_equal(sum(res), 400)
# forest image 4
test_image <- read_data_raster('_45_86_.jpeg', dir = Forestdir)
res <- classify(data=test_image, Model=Model_nonP_tr,
n_pts=n_pts, parallel=FALSE, progress = 'none')
expect_equal(sum(res), 400)
# forest image 5
test_image <- read_data_raster('_54_36_.jpeg', dir = Forestdir)
res <- classify(data=test_image, Model=Model_nonP_tr,
n_pts=n_pts, parallel=FALSE, progress = 'none')
expect_equal(sum(res), 400)
# forest image 6
test_image <- read_data_raster('_8_42_.jpeg', dir = Forestdir)
res <- classify(data=test_image, Model=Model_nonP_tr,
n_pts=n_pts, parallel=FALSE, progress = 'none')
expect_equal(sum(res), 400)
###### non-forest images
# non-forest image 1
test_image <- read_data_raster('_63_72_.jpeg', dir = Nonforestdir)
res <- classify(data=test_image, Model=Model_nonP_tr,
n_pts=n_pts, parallel=FALSE, progress = 'none')
expect_equal(sum(res), 0)
# non-forest image 2
test_image <- read_data_raster('_69_84_.jpeg', dir = Nonforestdir)
res <- classify(data=test_image, Model=Model_nonP_tr,
n_pts=n_pts, parallel=FALSE, progress = 'none')
expect_equal(sum(res), 0)
# non-forest image 3
test_image <- read_data_raster('_75_91_.jpeg', dir = Nonforestdir)
res <- classify(data=test_image, Model=Model_nonP_tr,
n_pts=n_pts, parallel=FALSE, progress = 'none')
expect_equal(sum(res), 0)
# non-forest image 4
test_image <- read_data_raster('_90_52_.jpeg', dir = Nonforestdir)
res <- classify(data=test_image, Model=Model_nonP_tr,
n_pts=n_pts, parallel=FALSE, progress = 'none')
expect_equal(sum(res), 0)
# non-forest image 5
test_image <- read_data_raster('_78_79_.jpeg', dir = Nonforestdir)
res <- classify(data=test_image, Model=Model_nonP_tr,
n_pts=n_pts, parallel=FALSE, progress = 'none')
expect_equal(sum(res), 0)
# non-forest image 6
test_image <- read_data_raster('_75_81_.jpeg', dir = Nonforestdir)
res <- classify(data=test_image, Model=Model_nonP_tr,
n_pts=n_pts, parallel=FALSE, progress = 'none')
expect_equal(sum(res), 0)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.