Nothing
lambda2emass<-function(lambda,m,M,sig,p,support=NULL,seed=1,mul=2)
{
#m is the number of Monte Carlo samples
#M is l*d-matrix, rows are the means
#sig is l*d-matrix, for l:th mixture d covariances
#p is l-vector, proportion for each mixture
set.seed(seed)
l<-dim(M)[1]
d<-dim(M)[2]
if (is.null(support)){
support<-matrix(0,2*d,1)
for (i in 1:d){
support[2*i-1]<-min(M[,i]-mul*sig[,i])
support[2*i]<-max(M[,i]+mul*sig[,i])
}
}
maksi<-0
for (i in 1:l){
zig<-sig[i,]
maksi<-maksi+p[i]*evanor(0)/prod(zig)
}
boxvol<-1
for (i in 1:d) boxvol<-boxvol*(support[2*i]-support[2*i-1])
boxvol<-boxvol*maksi
inside<-0
for (i in 1:m){
x<-matrix(0,d,1)
ran<-runif(d+1)
for (j in 1:d){
beg<-support[2*j-1]
end<-support[2*j]
x[j]<-beg+(end-beg)*ran[j]
}
y<-0+(maksi-0)*ran[d+1]
arvo<-0
for (j in 1:l){
zig<-sig[j,]
mu<-M[j,]
arvo<-arvo+p[j]*evanor((x-mu)/zig)/prod(zig)
}
if ((y<=arvo)&&(y>=lambda)) inside<-inside+1
}
emass<-boxvol*inside/m
return(emass)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.