implied | R Documentation |
bscallimpvol
and bsputimpvol
compute
Black-Scholes implied volatilties. The functions bscallimps
and bsputimps
, compute stock prices implied by a given
option price, volatility and option characteristics.
bscallimpvol(s, k, r, tt, d, price, lowvol, highvol, .tol=.Machine$double.eps^0.5) bsputimpvol(s, k, r, tt, d, price, lowvol, highvol, .tol=.Machine$double.eps^0.5) bscallimps(s, k, v, r, tt, d, price, lower=0.0001, upper=1e06, .tol=.Machine$double.eps^0.5) bsputimps(s, k, v, r, tt, d, price, lower=0.0001, upper=1e06, .tol=.Machine$double.eps^0.5)
s |
Stock price |
k |
Strike price of the option |
r |
Annual continuously-compounded risk-free interest rate |
tt |
Time to maturity in years |
d |
Dividend yield, annualized, continuously-compounded |
price |
Option price when computing an implied value |
lowvol |
minimum implied volatility |
highvol |
maximum implied volatility |
.tol |
numerical tolerance for zero-finding function 'uniroot' |
v |
Volatility of the stock, defined as the annualized standard deviation of the continuously-compounded return |
lower |
minimum stock price in implied price calculation |
upper |
maximum stock price in implied price calculation |
Returns a scalar or vector of option prices, depending on the inputs
Implied volatility (for the "impvol" functions) or implied stock price (for the "impS") functions.
Implied volatilties and stock prices do not exist if the price of the option exceeds no-arbitrage bounds. For example, if the interest rate is non-negative, a 40 strike put cannot have a price exceeding $40.
s=40; k=40; v=0.30; r=0.08; tt=0.25; d=0; bscallimpvol(s, k, r, tt, d, 4) bsputimpvol(s, k, r, tt, d, 4) bscallimps(s, k, v, r, tt, d, 4, ) bsputimps(s, k, v, r, tt, d, 4)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.