| databu | R Documentation |
Simulated example for abundance model, see code below.
data(databu)
A data frame with 1000 observations on the following 11 variables.
Ntrue counts
Yobserved counts
x1random variables used as covariates
x2random variables used as covariates
x3random variables used as covariates
x4random variables used as covariates
x5random variables used as covariates
x6random variables used as covariates
pprobability of detection
lambdamean of the linear predictor
Aoccupancy
phizero inflation probabilities
This simulated example corresponds to the Binomial - ZIP model implemented in the function svabu.
Simulated example.
Solymos, P., Lele, S. R. and Bayne, E. 2012. Conditional likelihood approach for analyzing single visit abundance survey data in the presence of zero inflation and detection error. Environmetrics, 23, 197–205. <doi:10.1002/env.1149>
data(databu)
str(databu)
## Not run:
## simulation
n <- 1000
set.seed(1234)
x1 <- runif(n,0,1)
x2 <- rnorm(n,0,1)
x3 <- runif(n,-1,1)
x4 <- runif(n,-1,1)
x5 <- rbinom(n,1,0.6)
x6 <- rbinom(n,1,0.4)
x7 <- rnorm(n,0,1)
X <- model.matrix(~ x1 + x5)
Z <- model.matrix(~ x2 + x5)
Q <- model.matrix(~ x7)
beta <- c(2,-0.8,0.5)
theta <- c(1, 2, -0.5)
phi <- 0.3
p <- drop(binomial("logit")$linkinv(Z %*% theta))
lambda <- drop(exp(X %*% beta))
A <- rbinom(n, 1, 1-phi)
N <- rpois(n, lambda * A)
Y <- rbinom(n, N, p)
databu <- data.frame(N=N, Y=Y, x1, x2, x3, x4, x5, x6, p=p, lambda=lambda, A, phi)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.