| deconvDDLSObj | R Documentation | 
Deconvolute bulk gene expression samples (bulk RNA-Seq). This function
requires a DigitalDLSorter object with a trained Deep Neural Network
model (trained.model slot) and the new bulk RNA-Seq samples to
be deconvoluted in the deconv.data slot. See
?loadDeconvData for more details.
deconvDDLSObj(
  object,
  name.data = "Bulk.DT",
  normalize = TRUE,
  scaling = "standardize",
  simplify.set = NULL,
  simplify.majority = NULL,
  use.generator = FALSE,
  batch.size = 64,
  verbose = TRUE
)
| object | 
 | 
| name.data | Name of the data stored in the  | 
| normalize | Normalize data before deconvolution ( | 
| scaling | How to scale data before training. It may be:
 | 
| simplify.set | List specifying which cell types should be compressed into a new label whose name will be the list item. See examples for details. If provided, results are stored in a list with 'raw' and 'simpli.set' results. | 
| simplify.majority | List specifying which cell types should be
compressed into the cell type with the highest proportion in each sample.
Unlike  | 
| use.generator | Boolean indicating whether to use generators for
prediction ( | 
| batch.size | Number of samples per batch. Only when  | 
| verbose | Show informative messages during the execution. | 
This function is intended for users who have built a devonvolution model
using their own single-cell RNA-Seq data. If you want to use a pre-trained
model to deconvolute your samples, see ?deconvDDLSPretrained.
DigitalDLSorter object with
deconv.results slot. The resulting information is a data frame with
samples (i) as rows and cell types (j) as columns. Each entry
represents the proportion of j cell type in i sample. If
simplify.set or/and simpplify.majority are provided, the
deconv.results slot will contain a list with raw and simplified
results.
Torroja, C. and Sánchez-Cabo, F. (2019). digitalDLSorter: A Deep Learning algorithm to quantify immune cell populations based on scRNA-Seq data. Frontiers in Genetics 10, 978. doi: \Sexpr[results=rd]{tools:::Rd_expr_doi("10.3389/fgene.2019.00978")}
trainDDLSModel
DigitalDLSorter
## Not run: 
set.seed(123)
sce <- SingleCellExperiment::SingleCellExperiment(
  assays = list(
    counts = matrix(
      rpois(30, lambda = 5), nrow = 15, ncol = 20,
      dimnames = list(paste0("Gene", seq(15)), paste0("RHC", seq(20)))
    )
  ),
  colData = data.frame(
    Cell_ID = paste0("RHC", seq(20)),
    Cell_Type = sample(x = paste0("CellType", seq(6)), size = 20,
                       replace = TRUE)
  ),
  rowData = data.frame(
    Gene_ID = paste0("Gene", seq(15))
  )
)
DDLS <- createDDLSobject(
  sc.data = sce,
  sc.cell.ID.column = "Cell_ID",
  sc.gene.ID.column = "Gene_ID",
  sc.filt.genes.cluster = FALSE, 
  sc.log.FC = FALSE
)
probMatrixValid <- data.frame(
  Cell_Type = paste0("CellType", seq(6)),
  from = c(1, 1, 1, 15, 15, 30),
  to = c(15, 15, 30, 50, 50, 70)
)
DDLS <- generateBulkCellMatrix(
  object = DDLS,
  cell.ID.column = "Cell_ID",
  cell.type.column = "Cell_Type",
  prob.design = probMatrixValid,
  num.bulk.samples = 50,
  verbose = TRUE
)
# training of DDLS model
tensorflow::tf$compat$v1$disable_eager_execution()
DDLS <- trainDDLSModel(
  object = DDLS,
  on.the.fly = TRUE,
  batch.size = 15,
  num.epochs = 5
)
# simulating bulk RNA-Seq data
countsBulk <- matrix(
  stats::rpois(100, lambda = sample(seq(4, 10), size = 100, replace = TRUE)),
  nrow = 40, ncol = 15,
  dimnames = list(paste0("Gene", seq(40)), paste0("Bulk", seq(15)))
)
seBulk <- SummarizedExperiment(assay = list(counts = countsBulk))
DDLS <- loadDeconvData(
  object = DDLS,
  data = seBulk,
  name.data = "Example"
)
# simplify arguments
simplify <- list(CellGroup1 = c("CellType1", "CellType2", "CellType4"),
                 CellGroup2 = c("CellType3", "CellType5"))
DDLS <- deconvDDLSObj(
  object = DDLS,
  name.data = "Example",
  simplify.set = simplify,
  simplify.majority = simplify
)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.