Nothing
#' McAbee Example Data
#'
#' Leaf physiognomic data of specimens collected from the McAbee Fossil Beds
#' in British Columbia, Canada (Lowe et al. 2018).
#'
#' @format ## `McAbeeExample`
#' A data frame with 192 rows and 18 columns:
#' \describe{
#' \item{Site}{Stratigraphic layer or locality}
#' \item{Specimen Number}{Repository number for individual specimen}
#' \item{Morphotype}{Morphotype the specimen belongs to}
#' \item{Measurer comments}{Additional notes about the specimen or its measurements}
#' \item{Margin}{Whether the margin is toothed (0) or entire (1)}
#' \item{Petiole Width}{The width of the petiole at the basalmost point of insertion into the leaf lamina}
#' \item{Blade area}{The reconstructed area of the leaf lamina, not including the petiole}
#' \item{Blade perimeter}{The length of the perimeter of the leaf lamina, not including the petiole}
#' \item{Feret}{The diameter of a circle with the same area as the leaf lamina, not including the petiole}
#' \item{Minimum Feret}{The longest line that can be drawn between two points on the perimeter of a selection that is perpendicular to Feret length. Approximates blade width.}
#' \item{Raw blade area}{The area of a leaf prepared for tooth measurements that still has its teeth.}
#' \item{Raw blade perimeter}{The perimeter of a leaf prepared for tooth measurements that still has its teeth.}
#' \item{Internal raw blade area}{The area of a leaf prepared for tooth measurements with teeth digitally removed.}
#' \item{Internal raw blade perimeter}{The perimeter of a leaf prepared for tooth measurements with teeth digitally removed.}
#' \item{Length of cut perimeter}{The total length of all segments of leaf removed from the leaf blade while removing damage during preparation of the leaf.}
#' \item{no. of primary teeth}{The number of primary teeth along the undamaged perimeter}
#' \item{no. of secondary teeth}{The number of secondary teeth along the undamaged perimeter}
#'
#' }
#' @references
#' * Lowe, A. J., D. R. Greenwood, C. K. West, J. M. Galloway, M. Sudermann, and T. Reichgelt. 2018. Plant community ecology and climate on an upland volcanic landscape during the Early Eocene Climatic Optimum: McAbee Fossil Beds, British Columbia, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology 511: 433–448.
#' @source Lowe et al. 2018
"McAbeeExample"
#' Climate Calibration Data
#'
#' Temperature and precipitation data associated with the modern localities used to calibrate the DiLP model
#'
#' @format ## `climate_calibration_data`
#' A data frame with 92 rows and 3 columns:
#' \describe{
#' \item{Site}{Locality name}
#' \item{MAT}{Mean Annual Temperature (celsius)}
#' \item{MAP}{Mean Annual Precipitation (mm)}
#' }
#' @source Peppe et al. 2011
#' @references
#' * Peppe, D.J., Royer, D.L., Cariglino, B., Oliver, S.Y., Newman, S., Leight, E., Enikolopov, G., Fernandez-Burgos, M., Herrera, F., Adams, J.M., Correa, E., Currano, E.D., Erickson, J.M., Hinojosa, L.F., Hoganson, J.W., Iglesias, A., Jaramillo, C.A., Johnson, K.R., Jordan, G.J., Kraft, N.J.B., Lovelock, E.C., Lusk, C.H., Niinemets, Ü., Peñuelas, J., Rapson, G., Wing, S.L. and Wright, I.J. (2011), Sensitivity of leaf size and shape to climate: global patterns and paleoclimatic applications. New Phytologist, 190: 724-739. https://doi.org/10.1111/j.1469-8137.2010.03615.x
"climate_calibration_data"
#' Physiognomy Calibration Data
#'
#' Leaf physiognomic data taken from the modern localities used to calibrate the DiLP model
#'
#' @format ## `physiognomy_calibration_data`
#' A data frame with 92 rows and 12 columns:
#' \describe{
#' \item{Site}{Locality name}
#' \item{Leaf.area}{Average leaf area at site}
#' \item{FDR}{Feret diameter:Feret length. Describes leaf linearity compared to a circle}
#' \item{Perimeter.ratio}{Ratio - Raw blade perimeter:Internal raw blade perimeter}
#' \item{TC.P}{Ratio - Tooth count:Perimeter}
#' \item{TC.IP}{Ratio - Tooth count:Internal perimeter}
#' \item{Avg.TA}{Average area of a primary tooth}
#' \item{TA.BA}{Ratio - Tooth area:Blade area}
#' \item{TA.P}{Ratio - Tooth area:Perimeter}
#' \item{TA.IP}{Ratio - Tooth area:Internal perimeter}
#' \item{TC.BA}{Ratio - Tooth count:Blade area}
#' \item{Margin}{Percentage of untoothed species at the site}
#' }
#' @source Peppe et al. 2011
#' @references
#' * Peppe, D.J., Royer, D.L., Cariglino, B., Oliver, S.Y., Newman, S., Leight, E., Enikolopov, G., Fernandez-Burgos, M., Herrera, F., Adams, J.M., Correa, E., Currano, E.D., Erickson, J.M., Hinojosa, L.F., Hoganson, J.W., Iglesias, A., Jaramillo, C.A., Johnson, K.R., Jordan, G.J., Kraft, N.J.B., Lovelock, E.C., Lusk, C.H., Niinemets, Ü., Peñuelas, J., Rapson, G., Wing, S.L. and Wright, I.J. (2011), Sensitivity of leaf size and shape to climate: global patterns and paleoclimatic applications. New Phytologist, 190: 724-739. https://doi.org/10.1111/j.1469-8137.2010.03615.x
"physiognomy_calibration_data"
lma_regressions <- list(
royer_species_mean_ma = list(
stat = "mean",
regression_slope = 0.382,
y_intercept = 3.070,
unexplained_mean_square = 0.032237,
sample_size_calibration = 667,
mean_log_petiole_metric_calibration = -3.011,
sum_of_squares_calibration = 182.1,
critical_value = 1.964
),
royer_site_mean_ma = list(
stat = "mean",
regression_slope = 0.429,
y_intercept = 3.214,
unexplained_mean_square = 0.005285,
sample_size_calibration = 25,
mean_log_petiole_metric_calibration = -2.857,
sum_of_squares_calibration = 5.331,
critical_value = 2.069
),
lowe_site_mean_ma = list(
stat = "mean",
regression_slope = 0.345,
y_intercept = 2.954,
unexplained_mean_square = 0.01212861,
sample_size_calibration = 70,
mean_log_petiole_metric_calibration = -2.902972,
sum_of_squares_calibration = 1.154691,
critical_value = 1.995469
),
lowe_site_variance_ma = list(
stat = "variance",
regression_slope = 0.302,
y_intercept = 5.028,
unexplained_mean_square = 0.1713672,
sample_size_calibration = 70,
mean_log_petiole_metric_calibration = -5.97104,
sum_of_squares_calibration = 5.085184,
critical_value = 1.995469
)
)
dilp_parameters <- list(
PeppeGlobal = list(
MAT.MLR.M = 0.21,
MAT.MLR.FDR = 42.296,
MAT.MLR.TC.IP = -2.609,
MAT.MLR.constant = -16.004,
MAT.MLR.error = 4,
MAT.SLR.M = 0.204,
MAT.SLR.constant = 4.6,
MAT.SLR.error = 4.8,
MAP.MLR.LA = 0.298,
MAP.MLR.TC.IP = 0.279,
MAP.MLR.PR = -2.717,
MAP.MLR.constant = 3.033,
MAP.MLR.SE = 0.6,
MAP.SLR.LA = 0.283,
MAP.SLR.constant = 2.92,
MAP.SLR.SE = 0.61
),
PeppeNH = list(
MAT.MLR.M = 0.233,
MAT.MLR.FDR = 0,
MAT.MLR.TC.IP = -1.547,
MAT.MLR.constant = 8.161,
MAT.MLR.error = 4,
MAT.SLR.M = 0.262,
MAT.SLR.constant = 3.167,
MAT.SLR.error = 2.0,
MAP.MLR.LA = NA,
MAP.MLR.TC.IP = NA,
MAP.MLR.PR = NA,
MAP.MLR.constant = NA,
MAP.MLR.SE = NA,
MAP.SLR.LA = NA,
MAP.SLR.constant = NA,
MAP.SLR.SE = NA
)
)
temp_regressions <- list(
Peppe2018 = list(slope = 0.194, constant = 5.884, error = 5), # 4.54
Peppe2011NH = list(slope = 0.262, constant = 3.167, error = 5.0), # 2.0
Peppe2011 = list(slope = 0.204, constant = 4.6, error = 5), # 4.8
WingGreenwood = list(slope = 0.306, constant = 1.141, error = 5), # 0.80
Wilf1997 = list(slope = 0.286, constant = 2.24, error = 5),
Miller2006 = list(slope = 0.290, constant = 1.320, error = 5)
)
precip_regressions <- list(
Peppe2018 = list(slope = 0.346, constant = 2.404, error = 0.93),
Peppe2011 = list(slope = 0.283, constant = 2.92, error = 0.61),
Jacobs2002 = list(slope = 0.321, constant = 2.476, error = 0.24),
Wilf1998 = list(slope = 0.546, constant = 0.786, error = 0.36)
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.