| rank_contributor_pairs | R Documentation | 
Separate a 2 person mixture by ranking the possible contributor pairs.
rank_contributor_pairs(contrib_pairs, fit, max_rank = NULL)
contrib_pairs | 
 A   | 
fit | 
 A   | 
max_rank | 
 Not used. Reserved for future use.  | 
A ranked_contrib_pairs object that is basically an order
vector and the probabilities for each pair (in the same order as given in
contrib_pairs), found by using fit. Note, that contributor
order is disregarded so that each contributor pair is only present once (and
not twice as would be the case if taking order into consideration).
contributor_pairs generate_mixture
disclapmix-package disclapmix
disclapmixfit clusterprob
predict.disclapmixfit print.disclapmixfit
summary.disclapmixfit simulate.disclapmixfit
disclap
data(danes) db <- as.matrix(danes[rep(1L:nrow(danes), danes$n), 1L:(ncol(danes) - 1L)]) set.seed(1) true_contribs <- sample(1L:nrow(db), 2L) h1 <- db[true_contribs[1L], ] h2 <- db[true_contribs[2L], ] db_ref <- db[-true_contribs, ] h1h2 <- c(paste(h1, collapse = ";"), paste(h2, collapse = ";")) tab_db <- table(apply(db, 1, paste, collapse = ";")) tab_db_ref <- table(apply(db_ref, 1, paste, collapse = ";")) tab_db[h1h2] tab_db_ref[h1h2] rm(db) # To avoid use by accident mixture <- generate_mixture(list(h1, h2)) possible_contributors <- contributor_pairs(mixture) possible_contributors fits <- lapply(1L:5L, function(clus) disclapmix(db_ref, clusters = clus)) best_fit_BIC <- fits[[which.min(sapply(fits, function(fit) fit$BIC_marginal))]] best_fit_BIC ranked_contributors_BIC <- rank_contributor_pairs(possible_contributors, best_fit_BIC) ranked_contributors_BIC plot(ranked_contributors_BIC, top = 10L, type = "b") get_rank(ranked_contributors_BIC, h1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.