dist_gh: The generalised g-and-h Distribution

View source: R/dist_gh.R

dist_ghR Documentation

The generalised g-and-h Distribution

Description

[Stable]

The generalised g-and-h distribution is a flexible distribution used to model univariate data, similar to the g-k distribution. It is known for its ability to handle skewness and heavy-tailed behavior.

Usage

dist_gh(A, B, g, h, c = 0.8)

Arguments

A

Vector of A (location) parameters.

B

Vector of B (scale) parameters. Must be positive.

g

Vector of g parameters.

h

Vector of h parameters. Must be non-negative.

c

Vector of c parameters (used for generalised g-and-h). Often fixed at 0.8 which is the default.

Details

We recommend reading this documentation on https://pkg.mitchelloharawild.com/distributional/, where the math will render nicely.

In the following, let X be a g-and-h random variable with parameters A, B, g, h, and c.

Support: (-\infty, \infty)

Mean: Not available in closed form.

Variance: Not available in closed form.

Probability density function (p.d.f):

The g-and-h distribution does not have a closed-form expression for its density. Instead, it is defined through its quantile function:

Q(u) = A + B \left( 1 + c \frac{1 - \exp(-gz(u))}{1 + \exp(-gz(u))} \right) \exp(h z(u)^2/2) z(u)

where z(u) = \Phi^{-1}(u)

Cumulative distribution function (c.d.f):

The cumulative distribution function is typically evaluated numerically due to the lack of a closed-form expression.

See Also

gk::dgh, dist_gk

Examples

dist <- dist_gh(A = 0, B = 1, g = 0, h = 0.5)
dist


mean(dist)
variance(dist)
support(dist)
generate(dist, 10)

density(dist, 2)
density(dist, 2, log = TRUE)

cdf(dist, 4)

quantile(dist, 0.7)


distributional documentation built on Sept. 17, 2024, 9:11 a.m.