View source: R/ReversedWeibull.R
| RevWeibull | R Documentation |
The reversed (or negated) Weibull distribution is a special case of the
\link{GEV} distribution, obtained when the GEV shape parameter \xi
is negative. It may be referred to as a type III extreme value
distribution.
RevWeibull(location = 0, scale = 1, shape = 1)
location |
The location (maximum) parameter |
scale |
The scale parameter |
shape |
The scale parameter |
We recommend reading this documentation on https://alexpghayes.github.io/distributions3/, where the math will render with additional detail and much greater clarity.
In the following, let X be a reversed Weibull random variable with
location parameter location = m, scale parameter scale =
s, and shape parameter shape = \alpha.
An RevWeibull(m, s, \alpha) distribution is equivalent to a
\link{GEV}(m - s, s / \alpha, -1 / \alpha) distribution.
If X has an RevWeibull(m, \lambda, k) distribution then
m - X has a \link{Weibull}(k, \lambda) distribution,
that is, a Weibull distribution with shape parameter k and scale
parameter \lambda.
Support: (-\infty, m).
Mean: m + s\Gamma(1 + 1/\alpha).
Median: m + s(\ln 2)^{1/\alpha}.
Variance:
s^2 [\Gamma(1 + 2 / \alpha) - \Gamma(1 + 1 / \alpha)^2].
Probability density function (p.d.f):
f(x) = \alpha s ^ {-1} [-(x - m) / s] ^ {\alpha - 1}%
\exp\{-[-(x - m) / s] ^ {\alpha} \}
for x < m. The p.d.f. is 0 for x \geq m.
Cumulative distribution function (c.d.f):
F(x) = \exp\{-[-(x - m) / s] ^ {\alpha} \}
for x < m. The c.d.f. is 1 for x \geq m.
A RevWeibull object.
Other continuous distributions:
Beta(),
Cauchy(),
ChiSquare(),
Erlang(),
Exponential(),
FisherF(),
Frechet(),
GEV(),
GP(),
Gamma(),
Gumbel(),
LogNormal(),
Logistic(),
Normal(),
StudentsT(),
Tukey(),
Uniform(),
Weibull()
set.seed(27)
X <- RevWeibull(1, 2)
X
random(X, 10)
pdf(X, 0.7)
log_pdf(X, 0.7)
cdf(X, 0.7)
quantile(X, 0.7)
cdf(X, quantile(X, 0.7))
quantile(X, cdf(X, 0.7))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.