View source: R/ReversedWeibull.R
RevWeibull | R Documentation |
The reversed (or negated) Weibull distribution is a special case of the
\link{GEV}
distribution, obtained when the GEV shape parameter \xi
is negative. It may be referred to as a type III extreme value
distribution.
RevWeibull(location = 0, scale = 1, shape = 1)
location |
The location (maximum) parameter |
scale |
The scale parameter |
shape |
The scale parameter |
We recommend reading this documentation on https://alexpghayes.github.io/distributions3/, where the math will render with additional detail and much greater clarity.
In the following, let X
be a reversed Weibull random variable with
location parameter location
= m
, scale parameter scale
=
s
, and shape parameter shape
= \alpha
.
An RevWeibull(m, s, \alpha
) distribution is equivalent to a
\link{GEV}
(m - s, s / \alpha, -1 / \alpha
) distribution.
If X
has an RevWeibull(m, \lambda, k
) distribution then
m - X
has a \link{Weibull}
(k, \lambda
) distribution,
that is, a Weibull distribution with shape parameter k
and scale
parameter \lambda
.
Support: (-\infty, m)
.
Mean: m + s\Gamma(1 + 1/\alpha)
.
Median: m + s(\ln 2)^{1/\alpha}
.
Variance:
s^2 [\Gamma(1 + 2 / \alpha) - \Gamma(1 + 1 / \alpha)^2]
.
Probability density function (p.d.f):
f(x) = \alpha s ^ {-1} [-(x - m) / s] ^ {\alpha - 1}%
\exp\{-[-(x - m) / s] ^ {\alpha} \}
for x < m
. The p.d.f. is 0 for x \geq m
.
Cumulative distribution function (c.d.f):
F(x) = \exp\{-[-(x - m) / s] ^ {\alpha} \}
for x < m
. The c.d.f. is 1 for x \geq m
.
A RevWeibull
object.
Other continuous distributions:
Beta()
,
Cauchy()
,
ChiSquare()
,
Erlang()
,
Exponential()
,
FisherF()
,
Frechet()
,
GEV()
,
GP()
,
Gamma()
,
Gumbel()
,
LogNormal()
,
Logistic()
,
Normal()
,
StudentsT()
,
Tukey()
,
Uniform()
,
Weibull()
set.seed(27)
X <- RevWeibull(1, 2)
X
random(X, 10)
pdf(X, 0.7)
log_pdf(X, 0.7)
cdf(X, 0.7)
quantile(X, 0.7)
cdf(X, quantile(X, 0.7))
quantile(X, cdf(X, 0.7))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.