Nothing
#' Allen et al.'s Phylogenetic Entropy of a Community
#'
#' Estimate entropy \insertCite{Allen2009}{divent} from
#' abundance or probability data and a phylogenetic or functional dendrogram.
#'
#' Estimators to deal with incomplete sampling are not implemented.
#' Use function [ent_phylo] with argument if they are needed.
#'
#' The phylogenetic entropy is calculated following
#' \insertCite{Allen2009;textual}{divent} for order \eqn{q=1} and
#' \insertCite{Leinster2012;textual}{divent} for other orders.
#' The result is identical to the total entropy calculated by
#' [ent_phylo].
#' It is much faster but no bias correction is available.
#'
#' All species of the `species_distribution` must be found in the tips of the
#' `tree`.
#'
#' @inheritParams check_divent_args
#' @param x An object, that may be a named numeric vector (names are species names)
#' containing abundances or probabilities,
#' or an object of class [abundances] or [probabilities].
#' @param prune What to do when some species are in the tree but not in `x`?
#' If `TRUE`, the tree is pruned to keep species of `x` only.
#' The height of the tree may be changed if a pruned branch is related to the root.
#' If `FALSE` (default), the length of branches of missing species is not summed
#' but the height of the tree is never changed.
#' @param ... Unused.
#'
#' @returns A tibble with the site names, the estimators used and the estimated entropy.
#'
#' @references
#' \insertAllCited{}
#'
#' @examples
#' # entropy of each community
#' ent_allen(paracou_6_abd, tree = paracou_6_taxo)
#'
#' # gamma entropy
#' ent_allen(paracou_6_abd, tree = paracou_6_taxo, gamma = TRUE)
#'
#' @name ent_allen
NULL
#' @rdname ent_allen
#'
#' @export
ent_allen <- function(x, tree, ...) {
UseMethod("ent_allen")
}
#' @rdname ent_allen
#'
#' @export
ent_allen.numeric <- function(
x,
tree,
q = 1,
normalize = TRUE,
prune = FALSE,
as_numeric = FALSE,
...,
check_arguments = TRUE) {
# Check arguments
if (any(check_arguments)) {
check_divent_args()
if (any(x < 0)) {
cli::cli_abort("Species probabilities or abundances must be positive.")
}
}
# Check species names
species_names <- names(x)
# Prepare the tree
tree <- as_phylo_divent(tree)
if (any(check_arguments)) {
# Check species in the tree
if (length(setdiff(species_names, rownames(tree$phylo_groups))) != 0) {
cli::cli_abort("Some species are missing in the tree.")
}
}
# More species in the tree than in x?
if (prune) {
species_not_found <- setdiff(tree$phylo$tip.label, names(x))
if (length(species_not_found) > 0){
# Prune the tree to keep species in Ps only
# tree$phylo is the only updated item of tree because others are useless
tree$phylo <- ape::drop.tip(tree$phylo, species_not_found)
}
}
# Branch lengths
lengths <- tree$phylo$edge.length
# Normalize x to have probabilities
the_prob <- x / sum(x)
# Get unnormalized probabilities p(b)
ltips <- lapply(tree$phylo$edge[, 2], FUN = function(node) tips(tree, node))
branches <- unlist(
lapply(ltips, FUN = function(tips.vector) sum(the_prob[tips.vector]))
)
# Calculate Tbar but do not normalize l(b)
T_bar <- sum(lengths * branches)
# Eliminate unobserved species (or 0log0 will retrun NaN)
lengths <- lengths[branches != 0]
branches <- branches[branches != 0]
# Sum the lengths of branches with abundance > 0
the_entropy <- -sum(lengths * branches^q * ln_q(branches, q)) /
ifelse(normalize, T_bar, 1)
# Return
if (as_numeric) {
return(the_entropy)
} else {
return(
tibble::tibble_row(
estimator = "naive",
order = q,
entropy = the_entropy
)
)
}
}
#' @rdname ent_allen
#'
#' @export
ent_allen.species_distribution <- function(
x,
tree,
q = 1,
normalize = TRUE,
prune = FALSE,
gamma = FALSE,
as_numeric = FALSE,
...,
check_arguments = TRUE) {
# Check arguments
if (any(check_arguments)) {
check_divent_args()
if (any(x < 0)) {
cli::cli_abort("Species probabilities or abundances must be positive.")
}
# Check species names
col_names <- colnames(x)
species_names <- col_names[!col_names %in% non_species_columns]
# Prepare the tree
tree <- as_phylo_divent(tree)
# Check species in the tree
if (length(setdiff(species_names, rownames(tree$phylo_groups))) != 0) {
cli::cli_abort("Some species are missing in the tree.")
}
} else {
# Prepare the tree
tree <- as_phylo_divent(tree)
}
if (gamma) {
# Build the metacommunity
abd <- metacommunity.abundances(
x,
as_numeric = TRUE,
check_arguments = FALSE
)
the_entropy <- ent_allen.numeric(
abd,
tree = tree,
q = q,
normalize = normalize,
as_numeric = as_numeric,
check_arguments = FALSE
)
if (!as_numeric) {
# Add the site column
the_entropy <- dplyr::bind_cols(
site = "Metacommunity",
the_entropy
)
}
return(the_entropy)
} else {
# Apply ent_allen.numeric() to each site
ent_allen_list <- apply(
# Eliminate site and weight columns
x[, !colnames(x) %in% non_species_columns],
# Apply to each row
MARGIN = 1,
FUN = ent_allen.numeric,
# Arguments
tree = tree,
q = q,
normalize = normalize,
prune = prune,
as_numeric = FALSE,
check_arguments = FALSE
)
# Make a tibble with site, estimator and entropy
the_entropy <- tibble::tibble(
# Restore non-species columns
x[colnames(x) %in% non_species_columns],
# Coerce the list returned by apply into a dataframe
do.call(rbind.data.frame, ent_allen_list)
)
if (as_numeric) {
return(the_entropy$entropy)
} else {
return(the_entropy)
}
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.