Nothing
# Combine all parameters
testthat::test_that(
"No estimator fails", {
testthat::skip_on_cran()
# Simulate communities systematically
rcommunity.list <- lapply(
# All distributions
eval(formals(divent:::rcommunity)$distribution),
function(distribution) {
# print(distribution)
rcommunity(
1,
size = 1000,
species_number = 300,
distribution = distribution,
check_arguments = TRUE
)
}
)
# Coerce to a dataframe
rcommunity.dataframe <- dplyr::bind_rows(rcommunity.list)
# Replace NA's due to binding by zeros
rcommunity.dataframe <- dplyr::mutate(
rcommunity.dataframe,
dplyr::across(
.cols = dplyr::everything(),
.fns = ~ ifelse(is.na(.x), 0, .x))
)
# The number of species must be less than 300
testthat::expect_gte(
300,
ncol(abd_species(rcommunity.dataframe)),
)
}
)
# Unveil probabilities
abd <- as.numeric(abd_species(paracou_6_abd[1, ]))
testthat::test_that(
"No estimator fails", {
testthat::skip_on_cran()
# Simulate communities systematically
rcommunity.list <- lapply(
# All distributions
eval(formals(divent:::rcommunity)$bootstrap),
function(bootstrap) {
# print(bootstrap)
rcommunity(
1,
abd = abd,
bootstrap = bootstrap,
check_arguments = TRUE
)
}
)
# Coerce to a dataframe
rcommunity.dataframe <- dplyr::bind_rows(rcommunity.list)
# Replace NA's due to binding by zeros
rcommunity.dataframe <- dplyr::mutate(
rcommunity.dataframe,
dplyr::across(
.cols = dplyr::everything(),
.fns = ~ ifelse(is.na(.x), 0, .x))
)
# The number of individuals must equal the sample size
testthat::expect_gte(
unique(rcommunity.dataframe$weight),
sum(abd)
)
}
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.