Nothing
##' Data on automatic analysis of cardiotocograms
##'
##' This data set contains measurements from 2126 fetal cardiotocograms (CTGs).
##' The CTGs were automatically processed and the respective diagnostic features measured.
##' The CTGs were also classified by three expert obstetricians and a consensus classification label
##' assigned to each of them. This description is taken from the UC Irvine Machine
##' Learning Repository, where this data set was downloaded from. The outcome \code{CLASS}
##' is categorical with ten classes that correspond to different fetal heart rate patterns.
##' See the 'Details' section below for further information.
##'
##' The variables are as follows:
##' \itemize{
##' \item \code{b}. numeric. Start instant
##' \item \code{e}. numeric. End instant
##' \item \code{LBE}. numeric. Fetal heart rate (FHR) baseline value assessed by medical expert (beats per minute)
##' \item \code{LB}. numeric. FHR baseline value assessed by SisPorto (beats per minute)
##' \item \code{AC}. numeric. Number of accelerations per second
##' \item \code{FM}. numeric. Number of fetal movements per second
##' \item \code{UC}. numeric. Number of uterine contractions per second
##' \item \code{DL}. numeric. Number of light decelerations per second
##' \item \code{DS}. numeric. Number of severe decelerations per second
##' \item \code{DP}. numeric. Number of prolonged decelerations per second
##' \item \code{ASTV}. numeric. Percentage of time with abnormal short term variability
##' \item \code{MSTV}. numeric. Mean value of short term variability
##' \item \code{ALTV}. numeric. Percentage of time with abnormal long term variability
##' \item \code{MLTV}. numeric. Mean value of long term variability
##' \item \code{Width}. numeric. Width of FHR histogram
##' \item \code{Min}. numeric. Minimum value of FHR histogram
##' \item \code{Max}. numeric. Maximum value of FHR histogram
##' \item \code{Nmax}. numeric. Number of histogram peaks
##' \item \code{Nzeros}. numeric. Number of histogram zeros
##' \item \code{Mode}. numeric. Mode of the histogram
##' \item \code{Mean}. numeric. Mean of the histogram
##' \item \code{Median}. numeric. Median of the histogram
##' \item \code{Variance}. numeric. Variance of the histogram
##' \item \code{Tendency}. factor. Histogram tendency (-1 for left asymmetric; 0 for symmetric; 1 for right asymmetric)
##' \item \code{CLASS}. factor. FHR pattern class
##' }
##' \verb{ }\cr
##' The classes of the outcome \code{CLASS} are as follows:
##' \itemize{
##' \item \code{A}. Calm sleep
##' \item \code{B}. REM sleep
##' \item \code{C}. Calm vigilance
##' \item \code{D}. Active vigilance
##' \item \code{SH}. Shift pattern (A or SUSP with shifts)
##' \item \code{AD}. Accelerative/decelerative pattern (stress situation)
##' \item \code{DE}. Decelerative pattern (vagal stimulation)
##' \item \code{LD}. Largely decelerative pattern
##' \item \code{FS}. Flat-sinusoidal pattern (pathological state)
##' \item \code{SUSP}. Suspect pattern
##' }
##' This is a pre-processed version of the "Cardiotocography" data set published
##' in the UC Irvine Machine Learning Repository. The raw data contained the four
##' additional variables \code{Date}, \code{FileName}, \code{SegFile}, and \code{NSP},
##' which were removed in this version of the data. Moreover, the variable \code{DR}, representing
##' the number of repetitive decelerations per second was removed as well because
##' it was 0 for all observations.
##'
##' @format A data frame with 2126 observations, 24 covariates and one 10-class outcome variable
##' @source UC Irvine Machine Learning Repository, link: \url{https://archive.ics.uci.edu/dataset/193/cardiotocography/} (Accessed: 29/08/2024)
##'
##' @examples
##'
##' # Load data:
##' data(ctg)
##'
##' # Numbers of observations per outcome class:
##' table(ctg$CLASS)
##'
##' # Dimension of data:
##' dim(ctg)
##'
##' # First rows of data:
##' head(ctg)
##'
##' @references
##' \itemize{
##' \item Ayres-de Campos, D., Bernardes, J., Garrido, A., Marques-de-Sá, J., Pereira-Leite, L. (2000). SisPorto 2.0: a program for automated analysis of cardiotocograms. J Matern Fetal Med. 9(5):311-318, <\doi{10.1002/1520-6661(200009/10)9:5<311::AID-MFM12>3.0.CO;2-9}>.
##' \item Dua, D., Graff, C. (2019). UCI Machine Learning Repository. Irvine, CA: University of California, School of Information and Computer Science. \url{https://archive.ics.uci.edu/ml/}.
##' }
##'
##' @name ctg
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.