Nothing
##' Data on human activity recognition using smartphones
##'
##' This data set contains sensor data from 30 volunteers aged 19-48 years, performing
##' six activities while wearing Samsung Galaxy S II smartphones on their waists.
##' The sensors recorded 3-axial linear acceleration and angular velocity at 50Hz.
##' The experiments were video-recorded to label the data manually. The outcome
##' \code{Activity} is categorical with six classes that differentiate the six
##' activities.\cr
##' This is an updated version of the Human Activity Recognition Using Smartphones
##' data set published in the UC Irvine Machine Learning Repository. This updated
##' version published on OpenML includes both raw sensor signals and updated
##' activity labels, with aggregated measurements for each individual and activity.
##'
##' The classes of the outcome \code{Activity} are as follows: \code{LAYING},
##' \code{SITTING}, \code{STANDING}, \code{WALKING}, \code{WALKING_DOWNSTAIRS},
##' \code{WALKING_UPSTAIRS}.\cr
##' The OpenML data set contained one additional variable \code{Person}
##' that was removed because it has too many factors to use it as a covariate
##' in prediction.
##'
##' @format A data frame with 180 observations (activities), 66 covariates and one
##' 6-class outcome variable
##' @source
##' \itemize{
##' \item Updated version: OpenML: data.name: Smartphone-Based_Recognition_of_Human_Activities, data.id: 4153, link: \url{https://www.openml.org/d/4153/} (Accessed: 29/08/2024)
##' \item Original version: UC Irvine Machine Learning Repository, link: \url{https://archive.ics.uci.edu/dataset/240/human+activity+recognition+using+smartphones/} (Accessed: 29/08/2024)
##' }
##'
##' @examples
##'
##' # Load data:
##' data(hars)
##'
##' # Numbers of observations per outcome class:
##' table(hars$Activity)
##'
##' # Dimension of data:
##' dim(hars)
##'
##' # First rows of (subset) data:
##' head(hars[,1:5])
##'
##' @references
##' \itemize{
##' \item Reyes-Ortiz, J.-L., Oneto, L., Samà , A., Parra, X., Anguita, D. (2016). Transition-aware human activity recognition using smartphones. Neurocomputing, 171:754-767, <\doi{10.1016/j.neucom.2015.07.085}>.
##' \item Vanschoren, J., van Rijn, J. N., Bischl, B., Torgo, L. (2013). OpenML: networked science in machine learning. SIGKDD Explorations 15(2):49-60, <\doi{10.1145/2641190.2641198}>.
##' \item Dua, D., Graff, C. (2019). UCI Machine Learning Repository. Irvine, CA: University of California, School of Information and Computer Science. \url{https://archive.ics.uci.edu/ml/}.
##' }
##'
##' @name hars
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.