Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
library(ggplot2)
## -----------------------------------------------------------------------------
library(dlim)
## -----------------------------------------------------------------------------
data("ex_data")
str(ex_data)
## -----------------------------------------------------------------------------
dlim_fit <- dlim(y = ex_data$y,
x = ex_data$exposure,
modifier = ex_data$modifier,
z = ex_data$z,
df_m = 10,
df_l = 10)
## -----------------------------------------------------------------------------
dlim_fit
## -----------------------------------------------------------------------------
dlim_pred <- predict(dlim_fit,
newdata = 0.5,
type="CE")
data.frame(cumul_betas = c(dlim_pred$est_dlim$betas_cumul),
LB = c(dlim_pred$est_dlim$cumul_LB),
UB = c(dlim_pred$est_dlim$cumul_UB))
## -----------------------------------------------------------------------------
dlim_pred <- predict(dlim_fit,
newdata = 0.5,
type="DLF")
data.frame(betas = c(dlim_pred$est_dlim$betas),
LB = c(dlim_pred$est_dlim$LB),
UB = c(dlim_pred$est_dlim$UB))
## -----------------------------------------------------------------------------
plot_cumulative(new_modifiers = seq(0.1,0.9,0.1),
mod_fit = dlim_fit,
mod_name = "modifier")
## -----------------------------------------------------------------------------
plot_DLF(new_modifiers = seq(0.1,0.9,0.1),
mod_fit = dlim_fit,
mod_name = "modifier",
plot_by = "time",
time_pts = c(10,20,30))
## -----------------------------------------------------------------------------
plot_DLF(new_modifiers = c(0.25, 0.5, 0.75),
mod_fit = dlim_fit,
mod_name = "modifier",
plot_by = "modifier")
## -----------------------------------------------------------------------------
plot_DLF(new_modifiers = seq(0.1,0.9,0.1),
mod_fit = dlim_fit,
mod_name = "modifier",
plot_by = "time",
exposure_time = 10:46,
time_pts = c(20, 30, 40))
## -----------------------------------------------------------------------------
plot_DLF(new_modifiers = c(0.25, 0.5, 0.75),
mod_fit = dlim_fit,
mod_name = "modifier",
plot_by = "modifier",
exposure_time = 10:46) +
xlab("months after parturition")
## -----------------------------------------------------------------------------
#predict
dlim_pred <- predict(dlim_fit,
newdata = seq(0.1, 0.9, 0.1))
#create data frame for plotting
dlim_cumul_df <- data.frame(Estimate = c(dlim_pred$est_dlim$betas_cumul),
LB = c(dlim_pred$est_dlim$cumul_LB),
UB = c(dlim_pred$est_dlim$cumul_UB),
Modifier = c(dlim_pred$est_dlim$modifiers))
#plotting
ggplot(dlim_cumul_df, aes(x = Modifier, y = Estimate)) +
geom_point(color = "blue") +
geom_errorbar(aes(ymin=LB, ymax=UB)) +
geom_hline(yintercept = 0, color = "black", size=1) +
xlab("Modifier") +
ylab("Change in response per unit of exposure") +
ggtitle("Cumulative Effect Esimates") +
theme_bw()
## -----------------------------------------------------------------------------
#predict
new_mods <- c(0.25, 0.5, 0.75)
dlim_pred <- predict(dlim_fit,
newdata = c(0.25, 0.5, 0.75),
type = "DLF")
#create data frame for plotting
dlim_pred_df <- data.frame(Estimate = c(t(dlim_pred$est_dlim$betas)),
LB = c(t(dlim_pred$est_dlim$LB)),
UB = c(t(dlim_pred$est_dlim$UB)),
Week = rep(1:37,length(new_mods)),
Modifier = rep(new_mods, each = 37))
#plotting
ggplot(dlim_pred_df, aes(x = Week, y = Estimate)) +
geom_point(color = "blue") +
geom_errorbar(aes(ymin=LB, ymax=UB)) +
geom_hline(yintercept = 0, color = "black", size=1) +
facet_grid(cols = vars(Modifier), labeller = "label_both") +
xlab("Exposure week") +
ylab("Change in response per unit of exposure") +
theme_bw()
## -----------------------------------------------------------------------------
model_comparison(fit = dlim_fit,
null = "none",
x = exposure,
B = 5)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.