| dmbc_get_map | R Documentation |
dmbc_get_map() is an extractor function for extracting the
maximum-a-posterior estimates of the parameters for a fitted DMBC model.
dmbc_get_map(res, chain = 1)
res |
An object of class |
chain |
A length-one numeric vector indicating the MCMC chain number to use. |
A named list with the following elements:
z: array of latent coordinates posterior mean estimates
alpha: numeric vector of alpha posterior mean estimates
eta: numeric vector of eta posterior mean estimates
sigma2: numeric vector of sigma2 posterior mean estimates
lambda: numeric vector of lambda posterior mean estimates
prob: numeric matrix of probability posterior mean estimates
cluster: numeric vector of cluster membership posterior mean estimates
logpost: length-one numeric vector of the maximum log-posterior value
chain: length-one numeric vector of the MCMC chain number used
Sergio Venturini sergio.venturini@unicatt.it
Venturini, S., Piccarreta, R. (2021), "A Bayesian Approach for Model-Based
Clustering of Several Binary Dissimilarity Matrices: the dmbc
Package in R", Journal of Statistical Software, 100, 16, 1–35, <10.18637/jss.v100.i16>.
dmbc_data for a description of the data format.
dmbc_fit_list for a description of the elements
included in the returned object.
## Not run:
data(simdiss, package = "dmbc")
G <- 3
p <- 2
prm.prop <- list(z = 1.5, alpha = .75)
burnin <- 2000
nsim <- 1000
seed <- 2301
set.seed(seed)
control <- list(burnin = burnin, nsim = nsim, z.prop = prm.prop[["z"]],
alpha.prop = prm.prop[["alpha"]], random.start = TRUE, verbose = TRUE,
nchains = 2, thin = 10, store.burnin = TRUE, threads = 2,
parallel = "snow")
sim.dmbc <- dmbc(simdiss, p, G, control)
dmbc_get_map(sim.dmbc, chain = 1)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.