Description Usage Arguments Value Functions Author(s) References See Also Examples
Computing the mean, variance, skewness and kurtosis for the split-normal distribution.
1 2 3 4 5 6 7 | splitn_kurtosis(lmd)
splitn_mean(mu, sigma, lmd)
splitn_skewness(sigma, lmd)
splitn_var(sigma, lmd)
|
lmd |
vector of skewness parameters (>0). If is 1, reduce to normal distribution. |
mu |
vector of location parameter. (The mode of the density) |
sigma |
vector of standard deviations. |
splitn_mean gives the mean. splitn_var gives the
variance. splitn_skewness gives the skewness.
splitn_kurtosis gives the kurtosis. (splitn_mean,
splitn_var,splitn_skeness and splitn_kurtosis are all
vectors.
splitn_kurtosis: Kurtosis for the split-normal distribution.
splitn_skewness: Skewness for the split-normal distribution.
splitn_var: Variance for the split-normal distribution.
Feng Li, Jiayue Zeng
Villani, M., & Larsson, R. (2006) The Multivariate Split Normal Distribution and Asymmetric Principal Components Analysis. Sveriges Riksbank Working Paper Series, No. 175.
psplitn() dsplitn() qsplitn() and
rsplitn() for the split-normal distribution.
1 2 3 4 5 6 7 8 | mu <- c(0,1,2)
sigma <- c(0.5,1,2)
lmd <- c(1,2,3)
mean0 <- splitn_mean(mu, sigma, lmd)
var0 <- splitn_var(sigma, lmd)
skewness0 <- splitn_skewness(sigma, lmd)
kurtosis0 <- splitn_kurtosis(lmd)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.