| dcop | R Documentation |
Probablitiy density function, distribution and random number generation for copulas.
dcop(
W,
delta,
distr = "normal",
rot = 0,
deriv_order = 0,
tri = NULL,
log.p = FALSE
)
pcop(W, delta = 0, distr = "normal", rot = 0, log.p = FALSE)
rcop(n, delta = 0, distr = "normal", rot = 0)
W |
numeric matrix of pseudo observations. Must have two columns. |
delta |
numeric vector of copula parameter |
distr |
string, defines the copula family: |
rot, |
integer determining the rotation for Archimedian copulas. Can be |
deriv_order |
integer; maximum order of derivative. Available are |
tri |
optional; index matrix for upper triangular, generated by |
log.p |
logical; if TRUE, probabilities p are given as log(p). |
n |
positive integer; number of observations. |
A two-dimensional copula C(w_1, w_2, \delta) is a multivariate cumulative distribution function for which the marginal probability distribution of w_1 and w_2 are uniform on the interval [0,1].
The parameter \delta specifies the copula.
The functions pcop() and rcop() are wrapper functions for the pCopula and rCopula.
dcop gives the density, pcop gives the distribution function for a specified copula and rcop generates random numbers, with given delta.
dcop() returns a derivs object. For more details see trind and trind_generator.
pcop(): distribution function for copula.
rcop(): random number generation for copula.
schepsmeier2014derivativesdsfa
hofert2018elementsdsfa
Other copula:
cop(),
delta_bounds()
u=0.3; v=0.7; p=0.5
pdf <- dcop(W=cbind(u,v), delta=p, distr="normal")
cdf <- pcop(W=cbind(u,v), delta=p, distr="normal")
r <- rcop(n=100, delta=p, distr="normal")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.