| quotientrule | R Documentation |
Quotientrule for derivs objects.
quotientrule(f_list, tri, deriv_order)
f_list |
list of |
tri |
list; created by the function [trind_generator()]. |
deriv_order |
integer; maximum order of derivative. Available are |
Let f_m be a function defined in [trind()], where m \in {1,...,M}.
Define h((x_{n1},x_{n2},...,x_{nK})) = f_1(\cdot) / f_2(\cdot) ... / f_M(x_{n1},x_{n2},...,x_{nK})).
In order to get the derivatives of h(\cdot) w.r.t all parameters x_{nk}, the quotientrule is applied.
For more details see [trind()] and [trind_generator()].The values of the derivs objects must be positive.
Numerically not precise, but included for reasons of completeness.
Returns an object of class derivs for the function h(\cdot).
Other derivs:
chainrule(),
derivs_transform(),
differencerule(),
ind2joint(),
list2derivs(),
productrule(),
sumrule(),
trind_generator(),
trind()
A<-matrix(c(1:9)/10, ncol=1)
A_derivs<-list2derivs(list(A, A^0, A^2, A^3, A^4), deriv_order=2)
B_derivs<-derivs_transform(A, type="inv", par=0, trind_generator(1), deriv_order=2)
quotientrule (list(A_derivs, B_derivs), trind_generator(1), deriv_order=2) #A/(1/A)=A^2
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.