Nothing
#' Print a summary of a model specification or fitted dsp object
#'
#' Method for printing basic information about the MCMC sampling settings for the fitted model
#'
#' @param x object of class dsp from [dsp_fit()]
#' @param ... currently not used
#'
#' @details
#' A brief summary of the settings used to fit the model including number of iterations,
#' burn in, and thinning rates.
#'
#' @returns NULL
#'
#' @examples
#' print(mcmc_output)
#'
#' @method print dsp
#' @rdname dsp_fit
#' @export
#'
print.dsp <- function(x, ...){
print(x$model_spec)
cat("\nTotal number of MCMC samples burned in:", x$mcpar["nburn"], "\n")
cat("Thinning interval use:", x$mcpar["nskip"], "\n")
cat("Total number of MCMC samples saved:", x$mcpar["nsave"])
invisible(NULL)
}
#' Print a summary of a model specification or fitted dsp object
#'
#' Method for printing basic information about the model specification
#'
#' @param x object of class dsp_spec from [dsp_spec()]
#' @param ... currently not used
#'
#' @returns NULL
#'
#' @export
#'
#' @examples
#' print(model_spec)
#'
#' @method print dsp_spec
#' @rdname dsp_spec
print.dsp_spec <- function(x, ...){
if(x$family == "gaussian"){
cat("Gaussian likelihood with ")
switch(x$model,
changepoint = cat("changepoint and outlier detection, "),
smoothing = cat("Bayesian trend smoothing, "),
regression = cat("time-varying regression, "),
bspline = cat("B-spline smoothing splines, "))
switch(x$arguments$obsSV,
const = cat("constant error variance, and "),
SV = cat("stochastic volatility, and "),
ASV = cat("adaptive stochastic volatility, and "))
cat(x$arguments$D, "degree of differencing.")
}
if(x$family == "negbinom"){
cat("Negative binomial likelihood with", x$arguments$D, "degree of differencing.")
}
invisible(NULL)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.