Description Usage Arguments Value Examples
View source: R/mle_lnorm_lnorm.R
Each observation is assumed to be the product of a Lognormal(mu1, sigsq1) and 
Lognormal(mu2, sigsq2) random variable, with mu2 and sigsq2 known. Performs 
maximization via nlminb. mu and sigsq correspond to 
meanlog and sdlog^2 in Lognormal.
| 1 2 | mle_lnorm_lnorm(x, mu2 = NULL, sigsq2 = NULL, estimate_var = FALSE,
  ...)
 | 
| x | Numeric vector. | 
| mu2 | Numeric value specifying known mu2. | 
| sigsq2 | Numeric value specifying known sigsq2. | 
| estimate_var | Logical value for whether to return Hessian-based variance-covariance matrix. | 
| ... | Additional arguments to pass to  | 
List containing:
Numeric vector of parameter estimates.
 Variance-covariance matrix (if estimate_var = TRUE).
 Returned nlminb object from maximizing the
log-likelihood function.
Akaike information criterion (AIC).
| 1 2 3 4 5 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.