Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup, echo = FALSE, message=FALSE---------------------------------------
library(dySEM)
library(dplyr)
library(lavaan)
DRES <- as_tibble(DRES)
## ----previewtib---------------------------------------------------------------
DRES
## ----scrape-------------------------------------------------------------------
dvn <- scrapeVarCross(DRES, x_order = "sip", x_stem = "PRQC", x_delim1="_",x_delim2=".", distinguish_1="1", distinguish_2="2")
## ----configscript-------------------------------------------------------------
qual.indist.script <- scriptCFA(dvn, lvname = "Quality")
## ----scriptsequence-----------------------------------------------------------
qual.res.script <- scriptCFA(dvn, lvname = "Quality", constr_dy_meas = c("loadings", "intercepts", "residuals"), constr_dy_struct = c("none"))
qual.int.script <- scriptCFA(dvn, lvname = "Quality", constr_dy_meas = c("loadings", "intercepts"), constr_dy_struct = c("none"))
qual.load.script <- scriptCFA(dvn, lvname = "Quality", constr_dy_meas = c("loadings"), constr_dy_struct = c("none"))
qual.config.script <- scriptCFA(dvn, lvname = "Quality", constr_dy_meas = c("none"), constr_dy_struct = c("none"))
## ----modelfit, warning= FALSE-------------------------------------------------
#Fit fully indistinguishable model
qual.ind.fit <- lavaan::cfa(qual.indist.script, data = DRES, std.lv = FALSE, auto.fix.first= FALSE, meanstructure = TRUE)
#Fit residual invariance model
qual.res.fit <- lavaan::cfa(qual.res.script, data = DRES, std.lv = FALSE, auto.fix.first= FALSE, meanstructure = TRUE)
#Fit intercept invariance model
qual.int.fit <- lavaan::cfa(qual.int.script, data = DRES, std.lv = FALSE, auto.fix.first= FALSE, meanstructure = TRUE)
#Fit loading invariance model
qual.load.fit <- lavaan::cfa(qual.load.script, data = DRES, std.lv = FALSE, auto.fix.first= FALSE, meanstructure = TRUE)
#Fit configural invariance model
qual.config.fit <- lavaan::cfa(qual.config.script, data = DRES, std.lv = FALSE, auto.fix.first= FALSE, meanstructure = TRUE)
## ----summary, eval = FALSE----------------------------------------------------
# summary(qual.config.fit, fit.measures = TRUE, standardized = TRUE, rsquare = TRUE)
## ----anova--------------------------------------------------------------------
anova(qual.config.fit, qual.load.fit, qual.int.fit, qual.res.fit, qual.ind.fit)
## ----dyoutput, eval = FALSE---------------------------------------------------
# outputParamTab(dvn, model = "cfa", fit = qual.indist.fit,
# tabletype = "measurement", writeTo = tempdir(),
# fileName = "cfa_indist")
#
# outputParamFig(fit = qual.indist.fit, figtype = "standardized",
# writeTo = tempdir(),
# fileName = "cfa_indist")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.