Nothing
#' eFCM: Exponential Factor Copula Model
#'
#' Implements the exponential Factor Copula Model (eFCM) of Castro-Camilo and Huser (2020) for spatial extremes, with tools for dependence estimation, tail inference,and visualization. The package supports likelihood-based inference, Gaussian process modeling via Matérn covariance functions, and bootstrap uncertainty quantification.
#'
#' @docType package
#' @name eFCM-package
#'
#' @references
#' Castro-Camilo, D. & Huser, R. (2020).
#' Local likelihood estimation of complex tail dependence structures, with application
#' to U.S. precipitation extremes. \emph{Journal of the American Statistical Association},
#' \strong{115}(531), 1037–1054. \doi{10.1080/01621459.2019.1611584}
#'
#' Li, M. & Castro-Camilo, D. (2025).
#' On the importance of tail assumptions in climate extreme event attribution.
#' \emph{arXiv}. \doi{10.48550/arXiv.2507.14019}
#'
#' @useDynLib eFCM, .registration = TRUE
#' @importFrom Rcpp sourceCpp
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.