R/epsilon.R

Defines functions epsilon_common epsilon_mult epsilon_additive

Documented in epsilon_additive epsilon_mult

#' Epsilon metric
#'
#' Computes the epsilon metric, either additive or multiplicative.
#'
#' @template arg_data
#'
#' @template arg_refset
#'
#' @template arg_maximise
#' 
#' @return  A single numerical value.
#'
#' @name epsilon
#'
#' @author Manuel \enc{López-Ibáñez}{Lopez-Ibanez}
#'
#' @details
#'
#' The epsilon metric of a set \eqn{A} with respect to a reference set \eqn{R}
#' is defined as
#' 
#' \deqn{epsilon(A,R) = \max_{r \in R} \min_{a \in A} \max_{1 \leq i \leq n} epsilon(a_i, r_i)}
#' 
#' where \eqn{a} and \eqn{b} are objective vectors and, in the case of
#' minimization of objective \eqn{i}, \eqn{epsilon(a_i,b_i)} is computed as
#' \eqn{a_i/b_i} for the multiplicative variant (respectively, \eqn{a_i - b_i}
#' for the additive variant), whereas in the case of maximization of objective
#' \eqn{i}, \eqn{epsilon(a_i,b_i) = b_i/a_i} for the multiplicative variant
#' (respectively, \eqn{b_i - a_i} for the additive variant). This allows
#' computing a single value for problems where some objectives are to be
#' maximized while others are to be minimized. Moreover, a lower value
#' corresponds to a better approximation set, independently of the type of
#' problem (minimization, maximization or mixed). However, the meaning of the
#' value is different for each objective type. For example, imagine that
#' objective 1 is to be minimized and objective 2 is to be maximized, and the
#' multiplicative epsilon computed here for \eqn{epsilon(A,R) = 3}. This means
#' that \eqn{A} needs to be multiplied by 1/3 for all \eqn{a_1} values and by 3
#' for all \eqn{a_2} values in order to weakly dominate \eqn{R}. The
#' computation of the multiplicative version for negative values doesn't make
#' sense.
#'
#' Computation of the epsilon indicator requires \eqn{O(n \cdot |A| \cdot
#' |R|)}, where \eqn{n} is the number of objectives (dimension of vectors).
#' @references
#'
#' \insertRef{ZitThiLauFon2003:tec}{eaf}
#' 
NULL
#> NULL

#' @rdname epsilon
#' @export
#' @concept metrics
#' @examples
#' # Fig 6 from Zitzler et al. (2003).
#' A1 <- matrix(c(9,2,8,4,7,5,5,6,4,7), ncol=2, byrow=TRUE)
#' A2 <- matrix(c(8,4,7,5,5,6,4,7), ncol=2, byrow=TRUE)
#' A3 <- matrix(c(10,4,9,5,8,6,7,7,6,8), ncol=2, byrow=TRUE)
#' 
#' plot(A1, xlab=expression(f[1]), ylab=expression(f[2]),
#'      panel.first=grid(nx=NULL), pch=4, cex=1.5, xlim = c(0,10), ylim=c(0,8))
#' points(A2, pch=0, cex=1.5)
#' points(A3, pch=1, cex=1.5)
#' legend("bottomleft", legend=c("A1", "A2", "A3"), pch=c(4,0,1),
#'        pt.bg="gray", bg="white", bty = "n", pt.cex=1.5, cex=1.2)
#' epsilon_mult(A1, A3) # A1 epsilon-dominates A3 => e = 9/10 < 1 
#' epsilon_mult(A1, A2) # A1 weakly dominates A2 => e = 1
#' epsilon_mult(A2, A1) # A2 is epsilon-dominated by A1 => e = 2 > 1
#' 
#' # A more realistic example
#' extdata_path <- system.file(package="eaf","extdata")
#' path.A1 <- file.path(extdata_path, "ALG_1_dat.xz")
#' path.A2 <- file.path(extdata_path, "ALG_2_dat.xz")
#' A1 <- read_datasets(path.A1)[,1:2]
#' A2 <- read_datasets(path.A2)[,1:2]
#' ref <- filter_dominated(rbind(A1, A2))
#' epsilon_additive(A1, ref)
#' epsilon_additive(A2, ref)
epsilon_additive <- function(data, reference, maximise = FALSE)
  epsilon_common(data = data, reference = reference, maximise = maximise,
                 mul = FALSE)

#' @rdname epsilon
#' @export
#' @concept metrics
#' @examples
#' # Multiplicative version of epsilon metric
#' ref <- filter_dominated(rbind(A1, A2))
#' epsilon_mult(A1, ref)
#' epsilon_mult(A2, ref)
#' 
epsilon_mult <- function(data, reference, maximise = FALSE)
  epsilon_common(data = data, reference = reference, maximise = maximise,
                 mul = TRUE)

epsilon_common <- function(data, reference, maximise, mul)
{
  data <- check_dataset(data)
  nobjs <- ncol(data) 
  npoints <- nrow(data)
  if (is.null(reference)) stop("reference cannot be NULL")
  
  reference <- check_dataset(reference)
  if (ncol(reference) != nobjs)
    stop("data and reference must have the same number of columns")
  reference_size <- nrow(reference)
  
  maximise <- as.logical(rep_len(maximise, nobjs))

  if (mul)
    return(.Call(epsilon_mul_C,
                 as.double(t(data)),
                 as.integer(nobjs),
                 as.integer(npoints),
                 as.double(t(reference)),
                 as.integer(reference_size),
                 maximise))
  else
    return(.Call(epsilon_add_C,
                 as.double(t(data)),
                 as.integer(nobjs),
                 as.integer(npoints),
                 as.double(t(reference)),
                 as.integer(reference_size),
                 maximise))
}

Try the eaf package in your browser

Any scripts or data that you put into this service are public.

eaf documentation built on Sept. 11, 2024, 8:45 p.m.