Nothing
context('alluvial_long')
test_that('alluvial_long'
,{
# sample data
data = quarterly_flights
# flow coloring variants
p = alluvial_long( data, key = qu, value = mean_arr_delay, id = tailnum, fill = carrier )
expect_doppelganger('long_fill_carrier', p)
p = alluvial_long( data, key = qu, value = mean_arr_delay, id = tailnum, fill_by = 'last_variable' )
expect_doppelganger('long_fill_last', p)
p = alluvial_long( data, key = qu, value = mean_arr_delay, id = tailnum, fill_by = 'first_variable' )
expect_doppelganger('long_fill_first', p)
p = alluvial_long( data, key = qu, value = mean_arr_delay, id = tailnum, fill_by = 'all_flows' )
expect_doppelganger('long_fill_value', p)
p = alluvial_long( data, key = qu, value = mean_arr_delay, id = tailnum, fill_by = 'value' )
# strings instead of unquoted expressions
p = alluvial_long( data, key = 'qu', value = 'mean_arr_delay', id = 'tailnum', fill = 'carrier' )
# use same color coding for flows and y levels
p = alluvial_long( data, qu, mean_arr_delay, tailnum, fill_by = 'value'
, col_vector_flow = palette_qualitative() %>% palette_filter(greys = F, bright = F)
, col_vector_value = palette_qualitative() %>% palette_filter(greys = F, bright = F) )
expect_doppelganger('long_sprecify_color', p)
# move fill variable to the left
p = alluvial_long( data, qu, mean_arr_delay, tailnum, carrier ,fill_right = F )
expect_doppelganger('long_fill_to_right', p)
# reorder levels
p = alluvial_long( data, qu, mean_arr_delay, tailnum, fill_by = 'first_variable'
, order_levels_value = c('on_time', 'late') )
expect_doppelganger('long_reorder_y_levels', p)
p = alluvial_long( data, qu, mean_arr_delay, tailnum, fill_by = 'first_variable'
, order_levels_key = c('Q4', 'Q3', 'Q2', 'Q1') )
expect_doppelganger('long_reorder_x_levels', p)
order_by_carrier_size = data %>%
group_by(carrier) %>%
count() %>%
arrange( desc(n) ) %>%
.[['carrier']]
p = alluvial_long( data, qu, mean_arr_delay, tailnum, carrier
, order_levels_fill = order_by_carrier_size )
expect_doppelganger('long_reorder_carrier_by_size', p)
#check integritiy of returned dataframe
expect_equivalent( unique(data$tailnum), levels( p$data_key$tailnum ) )
#check with incomplete data
data = quarterly_flights %>%
select(tailnum, qu, mean_arr_delay, carrier) %>%
sample_frac(0.9)
p = alluvial_long( data, qu, mean_arr_delay, tailnum, carrier
, NA_label = 'none'
, order_levels_value = 'none')
# comes up as false positive try again with next vdiffr version
#expect_doppelganger('long_none_label', p)
# check stratum options
p = alluvial_long( data, key = qu, value = mean_arr_delay, id = tailnum, fill = carrier
, stratum_labels = FALSE, stratum_label_type = "none", stratum_width = 1/20)
# comes up as false positive try again with next vdiffr version
#expect_doppelganger('long_strat_width', p)
# switch off automatic label angling
p = alluvial_long( data, key = qu, value = mean_arr_delay, id = tailnum, fill = carrier
, auto_rotate_xlabs = F )
# test warnign for high number of flows
suppressWarnings({
data_highflow = ggplot2::diamonds %>%
mutate( id = as.factor( row_number() ) ) %>%
manip_bin_numerics() %>%
gather( key = 'key', value = 'value', -id)
})
expect_warning( alluvial_long( data_highflow, key, value, id ) )
#gouped df
p = alluvial_long( group_by(data, carrier), key = qu, value = mean_arr_delay, id = tailnum)
# plot attachments
expect_true( all( c('data_key', 'alluvial_type', 'alluvial_params') %in% names(p) ) )
# numeric sample data
p = alluvial_long(quarterly_sunspots, key = qu, value = spots, id = year)
expect_doppelganger('long_all_nums', p)
p = alluvial_long(quarterly_sunspots, key = qu, value = spots, id = year, fill = mean_spots_per_year)
expect_doppelganger('long_all_nums_plus_fill', p)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.