Plot data and equation

Description

The function plot data and equation

Usage

1
2
3
regplot(data, model = 1, start = c(a = 1, b = 1, c = 1, d = 1, e = 1), 
xlab = "Explanatory Variable" , ylab = "Response Variable", 
position = 1, digits=6, mean=TRUE, legend=TRUE)

Arguments

data

data is a data.frame The first column contain the treatments (explanatory variable) and the remaining column the response variable

model

define the model

1 = "y~a+b*x" linear

2 = "y~a+b*x+c*x^2" quadratic

3 = "y ~ a + b * (x - c) * (x <= c)" linear plateau

4 = "y ~ (a + b * x + c * I(x^2)) * (x <= -0.5 * b/c) + (a + I(-b^2/(4 * c))) * (x > -0.5 * b/c)" quadratic plateau

5 = "ifelse(x>=d,(a-c*d)+(b+c)*x, a+b*x)" two linear

6 = "y~a*exp(b*x)" exponential

7 = "y~a*(1+b*(exp(-c*x)))^-1" logistic

8 = "y~a*(1-b*(exp(-c*x)))^3" van bertalanffy

9 = "y~a*(1-b*(exp(-c*x)))" brody

10 = "y~a*exp(-b*exp(-c*x)" gompertz

11 = "y~(a*x^b)*exp(-c*x)" lactation curve

12 = "y ~ a + b * (1 - exp(-c * x))" ruminal degradation curve

13 = "y~(a/(1+exp(2-4*c*(x-e))))+(b/(1+exp(2-4*d*(x-e))))" logistic bi-compartmental

start

start (iterations) values of model

xlab

names of variable x

ylab

names of variable y

position

position of equation in the graph

top=1

bottomright=2

bottom=3

bottomleft=4

left=5

topleft=6 (default)

topright=7

right=8

center=9

digits

number of digits (defalt=6)

mean

mean=TRUE (plot mean of data) mean=FALSE (plot all data)

legend

legend=TRUE (plot legend) legend=FALSE (not plot legend)

Author(s)

Emmanuel Arnhold <emmanuelarnhold@yahoo.com.br>

References

KAPS, M. and LAMBERSON, W. R. Biostatistics for Animal Science: an introductory text. 2nd Edition. CABI Publishing, Wallingford, Oxfordshire, UK, 2009. 504p.

See Also

nls,er1,er2,bl

Examples

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
# weights of Angus cow at ages from 8 to 108 months (Kaps and Lamberson, 2009)

weight=c(280,340,430,480,550,580,590,600,590,600)
age=c(8,12,24,36,48,60,72,84,96,108)

data1=data.frame(age, weight)

# linear
regplot(data1, model=1, digits=3, position=3, ylab="weight", xlab="age")

# quadratic
regplot(data1, model=2, digits=3, position=3)

# linear plateau
regplot(data1, model=3,ylab="weight", xlab="age")

# quadratic plateau
regplot(data1, model=4,ylab="weight", xlab="age")

# two linear
regplot(data1, model=5, start=c(250,6,2,50),digits=3, position=3 )

# exponential
regplot(data1, model=6, start=c(250,0.05))

# logistic
regplot(data1, model=7, start=c(600,4,0.05))

# van bertalanffy
regplot(data1, model=8, start=c(600,2,0.05))

# brody
regplot(data1, model=9, start=c(600,4,0.05))

# gompertz
regplot(data1, model=10, start=c(600,4,0.05))



# growth of Zagorje turkeys (Kaps and Lamberson, 2009)


weight=c(44,66,100,150,265,370,455,605,770)
age=c(1,7,14,21,28,35,42,49,56)

data2=data.frame(age,weight)

# two linear
regplot(data2, model=5, start=c(25,6,10,20))


# weight gain measurements of turkey poults (Kaps and Lamberson, 2009)

methionine=c(80,85,90,95,100,105,110,115,120)
gain=c(102,115,125,133,140,141,142,140,142)

data3=data.frame(methionine, gain)

# linear
regplot(data3, model=1)

# quadratic
regplot(data3, model=2)

# linear plateau
regplot(data3, model=3)

# quadratic plateau
regplot(data3, model=4)

# lactation curve
 milk=c(25,24,26,28,30,31,27,26,25,24,23,24,22,21,22,20,21,19,
18,17,18,18,16,17,15,16,14)
 days=c(15,15,15,75,75,75,135,135,135,195,195,195,255,255,255,315,
315,315,375,375,375,435,435,435,495,495,495)
    
data4=data.frame(days,milk)
	

regplot(data4, model=11, start=c(16,0.25,0.004))

# ruminal degradation 
time=c(2,6,9,24,48,72,96)
deg=c(20,33,46,55,66,72,76)

data5=data.frame(time,deg)

regplot(data5, model=12)

# logistic bi-compartmental (gas production)
time=c(0,12,24,36,48,60,72,84,96,108,120,144,168,192)
gas=c(0.002,3.8,8,14.5,16,16.5,17,17.4,17.9,18.1,18.8,19,19.2,19.3)
    
data6=data.frame(time,gas)

regplot(data6, model=13, start=c(19,4,0.025,0.004,5))

# multiple curves
time=c(0,12,24,48,64,72,96)
t1=c(36,48,59,72,85,86,87)
t2=c(14,25,36,49,59,65,72)
t3=c(55,78,86,87,86,87,88)

data=data.frame(time,t1,t2,t3)

regplot(data, model=12)
regplot(data, model=4)