Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup2, echo = FALSE-------------------------------------------------------------------------
options(width = 100)
library(eatGADS)
gads <- pisa
## ----GADSdat, echo = TRUE-------------------------------------------------------------------------
class(pisa)
names(pisa)
## ----setup, eval = FALSE--------------------------------------------------------------------------
# library(eatGADS)
# gads <- pisa
## ----data raw, echo = TRUE------------------------------------------------------------------------
pisa$dat[1:5, 1:5]
## ----meta raw, echo = FALSE-----------------------------------------------------------------------
extractMeta(gads, vars = c("gender"))
## ----overview-------------------------------------------------------------------------------------
extractMeta(gads, vars = c("hisei", "schtype"))
## ----names----------------------------------------------------------------------------------------
# inspect original meta data
extractMeta(gads, vars = "hisei")
# Change variable name
gads_labeled <- changeVarNames(GADSdat = gads, oldNames = "hisei", newNames = "hisei_new")
# inspect modified meta data
extractMeta(gads_labeled, vars = "hisei_new")
## ----varlabels------------------------------------------------------------------------------------
extractMeta(gads_labeled, vars = "hisei_new")
# Change variable label
gads_labeled <- changeVarLabels(GADSdat = gads_labeled, varName = "hisei_new",
varLabel = "Parental occupational status (highest)")
extractMeta(gads_labeled, vars = "hisei_new")
## ----format---------------------------------------------------------------------------------------
extractMeta(gads_labeled, "hisei_new")
# Change SPSS format
gads_labeled <- changeSPSSformat(GADSdat = gads_labeled, varName = "hisei_new",
format = "F10.2")
extractMeta(gads_labeled, "hisei_new")
## ----vallabels------------------------------------------------------------------------------------
# Adding value labels
extractMeta(gads_labeled, "hisei_new")
gads_labeled <- changeValLabels(GADSdat = gads_labeled, varName = "hisei_new",
value = c(-94, -99), valLabel = c("miss1", "miss2"))
extractMeta(gads_labeled, "hisei_new")
# Changing value labels
gads_labeled <- changeValLabels(GADSdat = gads_labeled, varName = "hisei_new",
value = c(-94, -99),
valLabel = c("missing: Question omitted",
"missing: Not administered"))
extractMeta(gads_labeled, "hisei_new")
## ----remove---------------------------------------------------------------------------------------
# Removing value labels
extractMeta(gads_labeled, "schtype")
gads_labeled <- removeValLabels(GADSdat = gads_labeled, varName = "schtype",
value = 1:3)
extractMeta(gads_labeled, "schtype")
## ----missings-------------------------------------------------------------------------------------
# Defining missings
extractMeta(gads_labeled, "hisei_new")
gads_labeled <- changeMissings(GADSdat = gads_labeled, varName = "hisei_new",
value = c(-94, -99), missings = c("miss", "miss"))
extractMeta(gads_labeled, "hisei_new")
## ----checkMissings--------------------------------------------------------------------------------
# Creating a new value label for a missing value but leaving the missing code as valid
gads_labeled <- changeValLabels(GADSdat = gads_labeled, varName = "gender",
value = -94, valLabel = "missing: Question omitted")
# Creating a new missing code but leaving the value label empty
gads_labeled <- changeMissings(GADSdat = gads_labeled, varName = "gender",
value = -99, missings = "miss")
# Checking value label and missing code alignment
gads_labeled2 <- checkMissings(gads_labeled, missingLabel = "missing")
# Checking missing tags for a certain value range
gads_labeled <- checkMissingsByValues(gads_labeled, missingValues = -50:-99)
## ----reuse----------------------------------------------------------------------------------------
extractMeta(gads_labeled, "age")
gads_labeled <- reuseMeta(GADSdat = gads_labeled, varName = "age",
other_GADSdat = gads_labeled, other_varName = "hisei_new",
missingLabels = "only", addValueLabels = TRUE)
extractMeta(gads_labeled, "age")
## ----select---------------------------------------------------------------------------------------
# Selecting variables
gads_motint <- extractVars(gads_labeled,
vars = c("int_a", "int_b", "int_c", "int_d", "instmot_a"))
namesGADS(gads_motint)
gads_int <- removeVars(gads_motint, vars = "instmot_a")
namesGADS(gads_int)
## ----clone variable-------------------------------------------------------------------------------
# Clone the variable "sameteach"
gads_labeled <- cloneVariable(gads_labeled, varName = "sameteach", new_varName = "sameteach2")
## ----add variables--------------------------------------------------------------------------------
# Extract the data
newDat <- gads_labeled$dat
# Adding a variable
newDat$classsize_kat <- ifelse(newDat$classsize > 15,
yes = "big", no = "small")
# Updating meta data
gads_labeled2 <- updateMeta(gads_labeled, newDat = newDat)
extractMeta(gads_labeled2, "classsize_kat")
## ----empty----------------------------------------------------------------------------------------
# Empty a variable completely
gads_labeled <- emptyTheseVariables(gads_labeled, vars = "idschool")
# Resulting frequency table
table(gads_labeled$dat$idschool, useNA = "ifany")
## ----recoding-------------------------------------------------------------------------------------
# Original data and meta data
gads_labeled$dat$gender[1:10]
extractMeta(gads_labeled, "gender")
# Recoding
gads_labeled <- recodeGADS(GADSdat = gads_labeled, varName = "gender",
oldValues = c(1, 2), newValues = c(10, 20))
# New data and meta data
gads_labeled$dat$gender[1:10]
extractMeta(gads_labeled, "gender")
## ----recoding old NA------------------------------------------------------------------------------
# Recoding of NA values
gads_labeled$dat$int_a[1:10]
gads_labeled <- recodeGADS(GADSdat = gads_labeled, varName = "int_a",
oldValues = NA, newValues = -94)
gads_labeled$dat$int_a[1:10]
## ----recode2NA------------------------------------------------------------------------------------
# Recoding of values as Missing/NA
gads_labeled$dat$schtype[1:10]
gads_labeled <- recode2NA(gads_labeled, recodeVars = c("hisei_new", "schtype"),
value = "3")
gads_labeled$dat$schtype[1:10]
## ----multiChar2fac--------------------------------------------------------------------------------
# Example data set
test_df <- data.frame(id = 1:5, varChar = c("german", "English",
"english", "POLISH", "polish"),
stringsAsFactors = FALSE)
test_gads <- import_DF(test_df)
# Recoding a character variable to numeric
test_gads2 <- multiChar2fac(test_gads, vars = "varChar", var_suffix = "_new")
extractMeta(test_gads2, "varChar_new")
## ----multiChar2fac convertCase--------------------------------------------------------------------
# Recoding a character variable to numeric while simplying case
test_gads2 <- multiChar2fac(test_gads, vars = "varChar", var_suffix = "_new",
convertCase = "upperFirst")
extractMeta(test_gads2, "varChar_new")
## ----autorecode-----------------------------------------------------------------------------------
id_df <- data.frame(id = c(1101, 1102, 1103, 1104, 1105),
varChar = c("german", "English", "english", "POLISH", "polish"),
stringsAsFactors = FALSE)
id_gads <- import_DF(id_df)
# Recoding a character variable to numeric
id_gads2 <- autoRecode(id_gads, var = "id", var_suffix = "_new")
id_gads2$dat[, c("id", "id_new")]
## ----relocate-------------------------------------------------------------------------------------
namesGADS(gads_labeled)[1:5]
# Relocate a single variable within a the data set
gads_labeled <- relocateVariable(GADSdat = gads_labeled, var = "idschool",
after = "schtype")
namesGADS(gads_labeled)[1:5]
# Relocate a single variable to the beginning of the data set
gads_labeled <- relocateVariable(GADSdat = gads_labeled, var = "idschool",
after = NULL)
namesGADS(gads_labeled)[1:5]
## ----getChangeMeta--------------------------------------------------------------------------------
# variable level
meta_var <- getChangeMeta(GADSdat = pisa, level = "variable")
## ----write Excel var, eval = FALSE----------------------------------------------------------------
# # write to Excel
# eatAnalysis::write_xlsx(meta_var, row.names = FALSE, "variable_changes.xlsx")
## ----read Excel var, eval = FALSE-----------------------------------------------------------------
# # write to Excel
# meta_var_changed <- readxl::read_excel("variable_changes.xlsx", col_types = rep("text", 8))
## ----var changes under the hood, eval = TRUE, echo = FALSE, results='hide'------------------------
meta_var_changed <- meta_var
meta_var_changed[4, "varName_new"] <- "schoolType"
meta_var_changed[1, "varLabel_new"] <- "Student Identifier Variable"
meta_var_changed[2, "format_new"] <- "F10.0"
## ----applyChangeMeta------------------------------------------------------------------------------
gads2 <- applyChangeMeta(meta_var_changed, GADSdat = pisa)
extractMeta(gads2, vars = c("idstud", "idschool", "schoolType"))
## ----valuelevel-----------------------------------------------------------------------------------
# value level
meta_val <- getChangeMeta(GADSdat = pisa, level = "value")
## ----write Excel val, eval = FALSE----------------------------------------------------------------
# # write to Excel
# eatAnalysis::write_xlsx(meta_val, row.names = FALSE, "value_changes.xlsx")
## ----read Excel val, eval = FALSE-----------------------------------------------------------------
# # write to Excel
# meta_val_changed <- readxl::read_excel("value_changes.xlsx",
# col_types = c("text", rep(c("numeric", "text", "text"), 2)))
## ----val changes under the hood, eval = TRUE, echo = FALSE, results='hide'------------------------
meta_val_changed <- meta_val
meta_val_changed[4, "valLabel_new"] <- "Acamedic Track"
meta_val_changed[7:8, "value_new"] <- c(10, 20)
## ----applyvalue-----------------------------------------------------------------------------------
gads3 <- applyChangeMeta(meta_val_changed, GADSdat = pisa)
extractMeta(gads3, vars = c("schtype", "sameteach"))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.