Description Usage Arguments Value Examples
View source: R/customizable_functions.R
Simulates a time series of binary or continuous exposure values with or without seasonal trends. It also allows the user to use a custom function for the shape of the exposure trend.
1 2 3 4 |
n |
A non-negative integer specifying the number of days to simulate. |
central |
A numeric value specifying the mean probability of exposure (for binary data) or the mean exposure value (for continuous data). |
sd |
A numeric value giving the standard deviation of the exposure values from the exposure trend line. |
trend |
A character string that specifies the desired trend function. Options are:
See the package vignette for examples of the shapes of these trends. |
slope |
A numeric value specifying the slope of the trend, to be used
with |
amp |
A numeric value specifying the amplitude of the seasonal trend. Must be between -1 and 1. |
exposure_type |
A character string specifying the type of exposure. Choices are "binary" or "continuous". |
start.date |
A date of the format "yyyy-mm-dd" from which to begin simulating daily exposures |
cust_exp_func |
An R object specifying the function to use to generate custom exposure values. |
cust_exp_args |
A list of arguments used in the user-specified custom function. |
cust_expdraw |
An R object specifying a user-created function
which determines the distribution of random noise off of the trend line.
This function must have inputs |
cust_expdraw_args |
A list of arguments other than |
A data frame with two columns: date (date
) and simulated
exposure values (x
).
1 2 3 4 5 6 7 8 9 10 | sim_exposure(n = 5, central = 0.25, exposure_type = "binary")
sim_exposure(n = 5, central = 100, sd = 10, exposure_type = "continuous")
library(ggplot2)
x_cont <- sim_exposure(n = 1000, central = 100, sd = 10,
exposure_type = "continuous",
trend = "cos1linear", amp = 0.6)
ggplot(x_cont, aes(x = date, y = x)) + geom_point()
x_cust <- sim_exposure(n = 1000, cust_exp_func = "custom_exposure",
cust_exp_args = list(metric = "temp"))
ggplot(x_cust, aes(x = date, y = x)) + geom_point()
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.