Nothing
ae2_table_path <- "../data/ae2.csv"
cutoff_date <- lubridate::ymd("2023-03-18")
test_that("featurise_time_since (first,years)", {
all_tables <- read_data(list(ae2 = ae2_table_path))
diag_101 <- featurise(
all_tables,
json_to_feature("../spec/test_time_since_firstyears.json")
)
# Check the result
orig_table <- read_one_table(ae2_table_path)
diag_101_expected <- orig_table %>%
filter(diagnosis_1 == 101 | diagnosis_2 == 101 | diagnosis_3 == 101) %>%
mutate(
years_since_first_101_diag =
(cutoff_date - time) %/% lubridate::ddays(365.25)
) %>%
group_by(id) %>%
summarise(years_since_first_101_diag = max(years_since_first_101_diag)) %>%
select(id, years_since_first_101_diag)
for (id_num in orig_table$id) {
if (!id_num %in% diag_101_expected$id) {
diag_101_expected <- diag_101_expected %>%
dplyr::add_row(id = id_num, years_since_first_101_diag = 40)
}
}
expect_equal(diag_101$feature_table, diag_101_expected)
})
test_that("featurise_time_since (last,years)", {
all_tables <- read_data(list(ae2 = ae2_table_path))
diag_101 <- featurise(
all_tables,
json_to_feature("../spec/test_time_since_lastyears.json")
)
# Check the result
orig_table <- read_one_table(ae2_table_path)
diag_101_expected <- orig_table %>%
filter(diagnosis_1 == 101 | diagnosis_2 == 101 | diagnosis_3 == 101) %>%
mutate(
years_since_last_101_diag =
(cutoff_date - time) %/% lubridate::ddays(365.25)
) %>%
group_by(id) %>%
summarise(years_since_last_101_diag = min(years_since_last_101_diag)) %>%
select(id, years_since_last_101_diag)
for (id_num in orig_table$id) {
if (!id_num %in% diag_101_expected$id) {
diag_101_expected <- diag_101_expected %>%
dplyr::add_row(id = id_num, years_since_last_101_diag = 40)
}
}
expect_equal(diag_101$feature_table, diag_101_expected)
})
test_that("featurise_time_since (first,days)", {
all_tables <- read_data(list(ae2 = ae2_table_path))
diag_101 <- featurise(
all_tables,
json_to_feature("../spec/test_time_since_firstdays.json")
)
# Check the result
orig_table <- read_one_table(ae2_table_path)
diag_101_expected <- orig_table %>%
filter(diagnosis_1 == 101 | diagnosis_2 == 101 | diagnosis_3 == 101) %>%
mutate(
days_since_first_101_diag =
(cutoff_date - time) %/% lubridate::ddays(1)
) %>%
group_by(id) %>%
summarise(days_since_first_101_diag = max(days_since_first_101_diag)) %>%
select(id, days_since_first_101_diag)
for (id_num in orig_table$id) {
if (!id_num %in% diag_101_expected$id) {
diag_101_expected <- diag_101_expected %>%
dplyr::add_row(id = id_num, days_since_first_101_diag = 40)
}
}
expect_equal(diag_101$feature_table, diag_101_expected)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.