| pdcor | R Documentation |
Partial distance correlation pdcor, pdcov, and tests.
pdcov.test(x, y, z, R)
pdcor.test(x, y, z, R)
pdcor(x, y, z)
pdcov(x, y, z)
x |
data or dist object of first sample |
y |
data or dist object of second sample |
z |
data or dist object of third sample |
R |
replicates for permutation test |
pdcor(x, y, z) and pdcov(x, y, z) compute the partial distance
correlation and partial distance covariance, respectively,
of x and y removing z.
A test for zero partial distance correlation (or zero partial distance covariance) is implemented in pdcor.test, and pdcov.test.
Argument types supported are numeric data matrix, data.frame, tibble, numeric vector, class "dist" object, or factor. For unordered factors a 0-1 distance matrix is computed.
Each test returns an object of class htest.
Maria L. Rizzo mrizzo@bgsu.edu and Gabor J. Szekely
Szekely, G.J. and Rizzo, M.L. (2014), Partial Distance Correlation with Methods for Dissimilarities. Annals of Statistics, Vol. 42 No. 6, 2382-2412.
n = 30
R <- 199
## mutually independent standard normal vectors
x <- rnorm(n)
y <- rnorm(n)
z <- rnorm(n)
pdcor(x, y, z)
pdcov(x, y, z)
set.seed(1)
pdcov.test(x, y, z, R=R)
set.seed(1)
pdcor.test(x, y, z, R=R)
if (require(MASS)) {
p = 4
mu <- rep(0, p)
Sigma <- diag(p)
## linear dependence
y <- mvrnorm(n, mu, Sigma) + x
print(pdcov.test(x, y, z, R=R))
## non-linear dependence
y <- mvrnorm(n, mu, Sigma) * x
print(pdcov.test(x, y, z, R=R))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.