| trainRF | R Documentation |
This function trains a random forest model. It identifies the optimal number of trees and value for mtry (number of variables sampled as candidates at each split) using out-of-bag error (OOB). The number of trees in each candidate model is set by the user with argument numTrees. The number of predictors to test per split, mtry, is found by exploring a range of values. If the response (y) is a factor, the starting value for mtry is max(1, floor(p / 3)), where p is the number of predictors. If the response is not a factor, the starting value is max(1, floor(sqrt(p))). Values ymtryIncrement argument until the total number of predictors is used. See ranger for more details.
The output of the function is any or all of: a table with out-of-bag (OOB) error of evaluated models; all evaluated models; and/or the single model with the lowest OOB error.
trainRF(
data,
resp = names(data)[1],
preds = names(data)[2:ncol(data)],
numTrees = c(250, 500, 750, 1000),
mtryIncrement = 2,
w = TRUE,
binary = TRUE,
out = "model",
cores = 1,
verbose = FALSE,
...
)
data |
Data frame. |
resp |
Response variable. This is either the name of the column in |
preds |
Character vector or integer vector. Names of columns or column indices of predictors. The default is to use the second and subsequent columns in |
numTrees |
Vector of number of trees to grow. All possible combinations of |
mtryIncrement |
Positive integer (default is 2). Number of predictors to add to |
w |
Weights. For random forests, weights are simply used as relative probabilities of selecting a row in
|
binary |
Logical. If |
out |
Character vector. One or more values:
|
cores |
Number of cores to use. Default is 1. If you have issues when |
verbose |
Logical. If |
... |
Arguments to pass to |
The object that is returned depends on the value of the out argument. It can be a model object, a data frame, a list of models, or a list of all two or more of these.
ranger
# NB: The examples below show a very basic modeling workflow. They have been
# designed to work fast, not produce accurate, defensible models. They can
# take a few minutes to run.
library(mgcv)
library(sf)
library(terra)
set.seed(123)
### setup data
##############
# environmental rasters
rastFile <- system.file('extdata/madClim.tif', package='enmSdmX')
madClim <- rast(rastFile)
# coordinate reference system
wgs84 <- getCRS('WGS84')
# lemur occurrence data
data(lemurs)
occs <- lemurs[lemurs$species == 'Eulemur fulvus', ]
occs <- vect(occs, geom=c('longitude', 'latitude'), crs=wgs84)
occs <- elimCellDuplicates(occs, madClim)
occEnv <- extract(madClim, occs, ID = FALSE)
occEnv <- occEnv[complete.cases(occEnv), ]
# create 10000 background sites (or as many as raster can support)
bgEnv <- terra::spatSample(madClim, 20000)
bgEnv <- bgEnv[complete.cases(bgEnv), ]
bgEnv <- bgEnv[1:min(10000, nrow(bgEnv)), ]
# collate occurrences and background sites
presBg <- data.frame(
presBg = c(
rep(1, nrow(occEnv)),
rep(0, nrow(bgEnv))
)
)
env <- rbind(occEnv, bgEnv)
env <- cbind(presBg, env)
predictors <- c('bio1', 'bio12')
### calibrate models
####################
# Note that all of the trainXYZ functions can made to go faster using the
# "cores" argument (set to just 1, by default). The examples below will not
# go too much faster using more cores because they are simplified, but
# you can try!
cores <- 1
# MaxEnt
mx <- trainMaxEnt(
data = env,
resp = 'presBg',
preds = predictors,
regMult = 1, # too few values for reliable model, but fast
verbose = TRUE,
cores = cores
)
# MaxNet
mn <- trainMaxNet(
data = env,
resp = 'presBg',
preds = predictors,
regMult = 1, # too few values for reliable model, but fast
verbose = TRUE,
cores = cores
)
# generalized linear model (GLM)
gl <- trainGLM(
data = env,
resp = 'presBg',
preds = predictors,
scale = TRUE, # automatic scaling of predictors
verbose = TRUE,
cores = cores
)
# generalized additive model (GAM)
ga <- trainGAM(
data = env,
resp = 'presBg',
preds = predictors,
verbose = TRUE,
cores = cores
)
# natural splines
ns <- trainNS(
data = env,
resp = 'presBg',
preds = predictors,
scale = TRUE, # automatic scaling of predictors
df = 1:2, # too few values for reliable model(?)
verbose = TRUE,
cores = cores
)
# boosted regression trees
envSub <- env[1:1049, ] # subsetting data to run faster
brt <- trainBRT(
data = envSub,
resp = 'presBg',
preds = predictors,
learningRate = 0.001, # too few values for reliable model(?)
treeComplexity = c(2, 3), # too few values for reliable model, but fast
minTrees = 1200, # minimum trees for reliable model(?), but fast
maxTrees = 1200, # too small for reliable model(?), but fast
tryBy = 'treeComplexity',
anyway = TRUE, # return models that did not converge
verbose = TRUE,
cores = cores
)
# random forests
rf <- trainRF(
data = env,
resp = 'presBg',
preds = predictors,
numTrees = c(100, 500), # using at least 500 recommended, but fast!
verbose = TRUE,
cores = cores
)
### make maps of models
#######################
# NB We do not have to scale rasters before predicting GLMs and NSs because we
# used the `scale = TRUE` argument in trainGLM() and trainNS().
mxMap <- predictEnmSdm(mx, madClim)
mnMap <- predictEnmSdm(mn, madClim)
glMap <- predictEnmSdm(gl, madClim)
gaMap <- predictEnmSdm(ga, madClim)
nsMap <- predictEnmSdm(ns, madClim)
brtMap <- predictEnmSdm(brt, madClim)
rfMap <- predictEnmSdm(rf, madClim)
maps <- c(
mxMap,
mnMap,
glMap,
gaMap,
nsMap,
brtMap,
rfMap
)
names(maps) <- c('MaxEnt', 'MaxNet', 'GLM', 'GAM', 'NSs', 'BRTs', 'RFs')
fun <- function() plot(occs, col='black', pch=3, add=TRUE)
plot(maps, fun = fun, nc = 4)
### compare model responses to BIO12 (mean annual precipitation)
################################################################
# make a data frame holding all other variables at mean across occurrences,
# varying only BIO12
occEnvMeans <- colMeans(occEnv, na.rm=TRUE)
occEnvMeans <- rbind(occEnvMeans)
occEnvMeans <- as.data.frame(occEnvMeans)
climFrame <- occEnvMeans[rep(1, 100), ]
rownames(climFrame) <- NULL
minBio12 <- min(env$bio12)
maxBio12 <- max(env$bio12)
climFrame$bio12 <- seq(minBio12, maxBio12, length.out=100)
predMx <- predictEnmSdm(mx, climFrame)
predMn <- predictEnmSdm(mn, climFrame)
predGl <- predictEnmSdm(gl, climFrame)
predGa <- predictEnmSdm(ga, climFrame)
predNat <- predictEnmSdm(ns, climFrame)
predBrt <- predictEnmSdm(brt, climFrame)
predRf <- predictEnmSdm(rf, climFrame)
plot(climFrame$bio12, predMx,
xlab='BIO12', ylab='Prediction', type='l', ylim=c(0, 1))
lines(climFrame$bio12, predMn, lty='solid', col='red')
lines(climFrame$bio12, predGl, lty='dotted', col='blue')
lines(climFrame$bio12, predGa, lty='dashed', col='green')
lines(climFrame$bio12, predNat, lty=4, col='purple')
lines(climFrame$bio12, predBrt, lty=5, col='orange')
lines(climFrame$bio12, predRf, lty=6, col='cyan')
legend(
'topleft',
inset = 0.01,
legend = c(
'MaxEnt',
'MaxNet',
'GLM',
'GAM',
'NS',
'BRT',
'RF'
),
lty = c(1, 1:6),
col = c(
'black',
'red',
'blue',
'green',
'purple',
'orange',
'cyan'
),
bg = 'white'
)
### compare response curves ###
###############################
modelNames <- c('MaxEnt', 'MaxNet', 'GLM', 'GAM', 'NS', 'BRT', 'RF')
responses <- responseCurves(
models = list(mx, mn, gl, ga, ns, brt, rf),
env = bgEnv,
ref = occEnv,
vars = predictors,
modelNames = modelNames
)
print(responses)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.