View source: R/dexpectilizeMatR.R
dexpectilizeMatR | R Documentation |
This function is part of the erfe package. It de-expectilizes a matrix of data vertor-wise, which means subtracting the expectile of level τ \in (0, 1) to every vector of the matrix column-wise. When τ=0.5 then the process of de-expectilizing corresponds to the process of deamining the matrix column-wise. That is, subtracting the mean-column from the column vector.
dexpectilizeMatR(ymat, aweight, panSizeVec)
ymat |
Numeric matrix to de-expectilize column-wise. |
aweight |
Numeric vector of individual asymmetric weight. |
panSizeVec |
Numeric vector of individual panel size. |
Return a de-expectilized matrix of the matrix ymat.
Amadou Barry, barryhafia@gmail.com
Barry, Amadou, Oualkacha, Karim, and Charpentier Arthur. (2022). Weighted asymmetric least squares regression with fixed-effects. arXiv preprint arXiv:2108.04737
set.seed(13) temps_obs <- 5 n_subj <- 50 id <- rep(1:n_subj, each=temps_obs) asym <- 0.5 panSizeVec <- unname(unlist(lapply(split(id, id), function(x) length(x)))) ymat <- matrix(NA, nrow = n_subj * temps_obs, ncol = 5) ymat <- matrix(mvtnorm::rmvnorm(n_subj * ncol(ymat), sigma = diag(rep(1, temps_obs))), ncol = ncol(ymat)) aweight <- rep(asym, temps_obs * n_subj) aweight[!(ymat[, 1] > mean(ymat[, 1]))] = 1 - asym dexpectilizeMatR(ymat, aweight, panSizeVec)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.