beta_priors | R Documentation |
This function allows the user to specify custom values for Gaussian priors on the slope parameters.
beta_priors(
k,
beta_mean_prior = matrix(0, k, 1),
beta_var_prior = diag(k) * 100
)
k |
The total number of slope parameters in the model. |
beta_mean_prior |
numeric |
beta_var_prior |
A |
For the slope parameters \beta
the package uses common Normal
prior specifications. Specifically, p(\beta)\sim\mathcal{N}(\underline{\mu}_\beta,\underline{V}_\beta)
.
This function allows the user to specify custom values for the prior hyperparameters \underline{\mu}_\beta
and \underline{V}_\beta
. The default values correspond to weakly informative Gaussian priors with mean
zero and a diagonal prior variance-covariance matrix with 100
on the main diagonal.
A list with the prior mean vector (beta_mean_prior
), the prior variance matrix
(beta_var_prior
) and the inverse of the prior variance matrix (beta_var_prior_inv
).
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.