rho_sampler | R Documentation |
\rho
An R6 class for sampling the spatial autoregressive parameter \rho
An R6 class for sampling the spatial autoregressive parameter \rho
An R6Class
generator object
This class samples the spatial autoregressive parameter using either a tuned random-walk
Metropolis-Hastings or a griddy Gibbs step. Use the rho_priors
class for setup.
For the griddy Gibbs algorithm see Ritter and Tanner (1992).
rho_prior
The current rho_priors
curr_rho
The current value of \rho
curr_W
The current spatial weight matrix W
; an n
by n
matrix.
curr_A
The current spatial filter matrix I - \rho W
.
curr_AI
The inverse of curr_A
curr_logdet
The current log-determinant of curr_A
curr_logdets
A set of log-determinants for various values of \rho
. See the
rho_priors
function for settings of step site and other parameters of the grid.
new()
rho_sampler$new(rho_prior, W = NULL)
rho_prior
The list returned by rho_priors
W
An optional starting value for the spatial weight matrix W
stopMHtune()
Function to stop the tuning of the Metropolis-Hastings step. The tuning of the Metropolis-Hastings step is usually carried out until half of the burn-in phase. Call this function to turn it off.
rho_sampler$stopMHtune()
setW()
rho_sampler$setW(newW, newLogdet = NULL, newA = NULL, newAI = NULL)
newW
The updated spatial weight matrix W
.
newLogdet
An optional value for the log determinant corresponding to newW
and curr_rho
.
newA
An optional value for the spatial projection matrix using newW
and curr_rho
.
newAI
An optional value for the matrix inverse of newA
.
sample()
rho_sampler$sample(Y, mu, sigma)
Y
The n
by T
matrix of responses.
mu
The n
by T
matrix of means.
sigma
The variance parameter \sigma^2
.
sample_Griddy()
rho_sampler$sample_Griddy(Y, mu, sigma)
Y
The n
by T
matrix of responses.
mu
The n
by T
matrix of means.
sigma
The variance parameter \sigma^2
.
sample_MH()
rho_sampler$sample_MH(Y, mu, sigma)
Y
The n
by T
matrix of responses.
mu
The n
by T
matrix of means.
sigma
The variance parameter \sigma^2
.
Ritter, C., and Tanner, M. A. (1992). Facilitating the Gibbs sampler: The Gibbs stopper and the griddy-Gibbs sampler. Journal of the American Statistical Association, 87(419), 861-868.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.