View source: R/summary.etasclass.R
summary.etasclass | R Documentation |
This is the main method to summarize the output of an object of class etasclass
.
It gives some information on the execution and gives estimates of the ETAS parameters together with the standard errors.
More detailed output is avaliable by inspecting str(etasclass.object)
, and printing single objects.
## S3 method for class 'etasclass'
summary(object,full=FALSE,...)
object |
an |
full |
logical. New in version 2.2. If |
... |
other arguments. |
Displays summary information about an object of class etasclass
.
Displays AIC values, parameters estimates and their standard errors, together with some information on the execution of the etasclass
estimation process. Displays also the exact call of the function that generated etasclass
Marcello Chiodi, Giada Adelfio
etasclass
,eqcat
, profile.etasclass
## Not run:
# summary method for the etasclass object esecov1 and esecov5
(see examples in \code{\link{etasclass}})
## only with one covariate, the magnitude, classical ETAS model
> summary(esecov1)
Call:
etasclass(cat.orig = catalog.withcov, magn.threshold = 2.5, magn.threshold.back = 3.9,
mu = 0.3, k0 = 0.02, c = 0.015, p = 0.99, gamma = 0, d = 1,
q = 1.5, params.ind = c(TRUE, TRUE, TRUE, TRUE, FALSE, TRUE,
TRUE), formula1 = "time ~ magnitude- 1", declustering = TRUE,
thinning = FALSE, flp = TRUE, ndeclust = 15, onlytime = FALSE,
is.backconstant = FALSE, sectoday = FALSE, usenlm = TRUE,
compsqm = TRUE, epsmax = 1e-04, iterlim = 100, ntheta = 36)
Execution started: 2020-05-03 00:24:08
Elapsed time of execution (hours) 0.2294818
Number of observations 2226
Magnitude threshold 2.5
declustering TRUE
Number of declustering iterations 6
Kind of declustering weighting
flp TRUE
sequence of AIC values for each iteration
44887.75 43348.46 43250.77 43249.77 43249.27 43249.19
final AIC value
44887.75 43348.46 43250.77 43249.77 43249.27 43249.19
-------------------------------------------------------
formula for covariates of the triggered components:
time ~ magnitude - 1
<environment: 0x55968d6fd660>
ETAS Parameters:
Estimates std.err.
mu 0.667509 0.022620
k0 0.022393 0.005781
c 0.014769 0.002708
p 1.110059 0.015709
gamma 0.000000 0.000000
d 1.905461 0.260360
q 1.947223 0.077627
magnitude 0.740109 0.092558
-------------------------------------------------------
#### using covariates
> summary(esecov5)
Call:
etasclass(cat.orig = catalog.withcov, magn.threshold = 2.5, magn.threshold.back = 3.9,
mu = 0.3, k0 = 0.02, c = 0.015, p = 0.99, gamma = 0, d = 1,
q = 1.5, params.ind = c(TRUE, TRUE, TRUE, TRUE, FALSE, TRUE,
TRUE), formula1 = "time ~ z + magnitude +nstaloc_rev +min_distance_rev+distmin- 1",
declustering = TRUE, thinning = FALSE, flp = TRUE, ndeclust = 15,
onlytime = FALSE, is.backconstant = FALSE, sectoday = FALSE,
usenlm = TRUE, compsqm = TRUE, epsmax = 1e-04, iterlim = 100,
ntheta = 36)
Execution started: 2020-05-03 12:22:31
Elapsed time of execution (hours) 0.4827933
Number of observations 2226
Magnitude threshold 2.5
declustering TRUE
Number of declustering iterations 3
Kind of declustering weighting
flp TRUE
sequence of AIC values for each iteration
44693.04 42884.07 42706.16
final AIC value
44693.04 42884.07 42706.16
-------------------------------------------------------
formula for covariates of the triggered components:
time ~ z + magnitude + nstaloc_rev + min_distance_rev + distmin -
1
<environment: 0x55968d5ed118>
ETAS Parameters:
Estimates std.err.
mu 0.705351 0.022740
k0 0.073070 0.021194
c 0.019396 0.003435
p 1.154186 0.016874
gamma 0.000000 0.000000
d 1.942929 0.272434
q 2.004915 0.084784
z -0.041256 0.005779
magnitude 1.157698 0.085360
nstaloc_rev -0.009010 0.001817
min_distance_rev -0.011020 0.002804
distmin -1.826717 0.298649
-------------------------------------------------------
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.