bootclus | R Documentation |
bootclus
generates a credal partition by bootstrapping Gaussian Mixture Models.
bootclus(
x,
conf = 0.9,
B = 500,
param = list(G = NULL),
type = "pairs",
Omega = FALSE
)
x |
attribute matrix or data frame of size (n,p). |
conf |
confidence level (default: 0.90). |
B |
number of bootstrap samples (default=500) |
param |
list of arguments passed to function |
type |
Type of focal sets ("simple": |
Omega |
Logical. If TRUE, |
This function uses the mclust
package to generate and bootstrap the mixture models.
A list with the following components:
An object of class 'Mclust
' returned by Mclust
.
An object of class 'credpart
' providing the output credal partition.
An array of dimension (2,n,n) containing the confidence intervals on pairwise probabilities.
An array of dimension (2,n,n) containing the pairwise Bel-Pl intervals.
A matrix of size (3,5) containing the computing time as returned by function proctime
for (1) the parameter estimation and bootstrap, (2) the computation fo the quantiles on pairwise
probabilities, and (3) the computation of the credal partition.
T. Denoeux. Calibrated model-based evidential clustering using bootstrapping. Information Sciences, Vol. 528, pages 17-45, 2020.
ecm
, recm
,
cecm
, kevclus
.
## Example with the Faithful geyser data
## Not run:
data("faithful")
X<-faithful
param=list(G=3)
res.faithful<-bootclus(X,conf=0.90,B=100,param=param)
## Plot the results
plot(res.faithful$Clus,X)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.