Nothing
test_that("correctly recognizes wrong variable type for estimate argument", {
estimate <- EventStudy(estimator = "OLS", data = example_data, outcomevar = "y_base",
policyvar = "z", idvar = "id", timevar = "t",
controls = "x_r", FE = TRUE, TFE = TRUE,
post = 3, pre = 2, overidpre = 4, overidpost = 5, normalize = - 3, cluster = TRUE, anticipation_effects_normalization = TRUE)
df_estimate <- estimatr::tidy(estimate[[1]])
test = "z_fd_lag1 = z_fd"
expect_error(TestLinear(df_estimate, test, pretrends = T, leveling_off = T))
expect_error(TestLinear(estimate[[1]], test, pretrends = T, leveling_off = T))
expect_error(TestLinear(estimate[[2]], test, pretrends = T, leveling_off = T))
})
test_that("correctly recognizes wrong variable type for pretrends", {
estimate <- EventStudy(estimator = "OLS", data = example_data, outcomevar = "y_base",
policyvar = "z", idvar = "id", timevar = "t",
controls = "x_r", FE = TRUE, TFE = TRUE,
post = 3, pre = 2, overidpre = 4, overidpost = 5, normalize = - 3, cluster = TRUE, anticipation_effects_normalization = TRUE)
expect_error(TestLinear(df_estimate, pretrends = "pretrends"))
expect_error(TestLinear(df_estimate, pretrends = 1))
})
test_that("correctly recognizes wrong variable type for leveling_off", {
estimate <- EventStudy(estimator = "OLS", data = example_data, outcomevar = "y_base",
policyvar = "z", idvar = "id", timevar = "t",
controls = "x_r", FE = TRUE, TFE = TRUE,
post = 3, pre = 2, overidpre = 4, overidpost = 5, normalize = - 3, cluster = TRUE, anticipation_effects_normalization = TRUE)
expect_error(TestLinear(df_estimate, leveling_off = "leveling_off"))
expect_error(TestLinear(df_estimate, leveling_off = 1))
})
test_that("produces only functions that are specified", {
estimate <- EventStudy(estimator = "OLS", data = example_data, outcomevar = "y_base",
policyvar = "z", idvar = "id", timevar = "t",
controls = "x_r", FE = TRUE, TFE = TRUE,
post = 3, pre = 2, overidpre = 4, overidpost = 5, normalize = - 3, cluster = TRUE, anticipation_effects_normalization = TRUE)
test = "z_fd_lag1 = z_fd"
df <- TestLinear(estimate, pretrends = F, leveling_off = F)
expect_equal(length(df$Test), 0)
df <- TestLinear(estimate, test, pretrends = F, leveling_off = F)
expect_equal(length(df$Test), 1)
expect_equal(df$Test, "User Test")
df <- TestLinear(estimate, pretrends = T, leveling_off = F)
expect_equal(length(df$Test), 1)
expect_equal(df$Test, "Pre-Trends")
df <- TestLinear(estimate, pretrends = F, leveling_off = T)
expect_equal(length(df$Test), 1)
expect_equal(df$Test, "Leveling-Off")
df <- TestLinear(estimate, test, pretrends = T, leveling_off = F)
expect_equal(length(df$Test), 2)
tests <- c("User Test", "Pre-Trends")
expect_equal(df$Test, tests)
df <- TestLinear(estimate, test, pretrends = F, leveling_off = T)
expect_equal(length(df$Test), 2)
tests <- c("User Test", "Leveling-Off")
expect_equal(df$Test, tests)
df <- TestLinear(estimate, pretrends = T, leveling_off = T)
expect_equal(length(df$Test), 2)
tests <- c("Pre-Trends", "Leveling-Off")
expect_equal(df$Test, tests)
df <- TestLinear(estimate, test, pretrends = T, leveling_off = T)
expect_equal(length(df$Test), 3)
tests <- c("User Test", "Pre-Trends", "Leveling-Off")
expect_equal(df$Test, tests)
})
test_that("checks equality with STATA", {
estimate <- suppressWarnings(
EventStudy(estimator = "OLS", data = example_data, outcomevar = "y_base",
policyvar = "z", idvar = "id", timevar = "t",
FE = TRUE, TFE = TRUE,
post = 2, pre = 2, overidpre = 2,
overidpost = 2, normalize = - 1,
cluster = TRUE, anticipation_effects_normalization = TRUE)
)
codes <- read.csv('input/pvalues.txt', header = F)
pretrends_stata_p <- codes[1,1]
leveloff_stata_p <- codes[2,1]
df_test_linear <- TestLinear(estimate, pretrends = T, leveling_off = T)
pretrends_p_value <- df_test_linear[df_test_linear["Test"] == "Pre-Trends", "p.value"]
levelingoff_p_value <- df_test_linear[df_test_linear["Test"] == "Leveling-Off", "p.value"]
expect_true(abs(pretrends_stata_p - pretrends_p_value) < 0.0001)
expect_true(abs(leveloff_stata_p - levelingoff_p_value) < 0.0001)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.