glioma | R Documentation |
A non-randomized pilot study on malignant glioma patients with pretargeted adjuvant radioimmunotherapy using Yttrium-90-biotin.
data(glioma)
A data frame with 37 observations on the following 7 variables.
patient number.
patients ages in years.
a factor with levels F
(emale) and M
(ale).
a factor with levels GBM
(grade IV) and
Grade3
(grade III)
survival times in month.
censoring indicator: 0
censored and 1
dead.
a factor with levels Control
and RIT
.
The primary endpoint of this small pilot study is survival. Survival times are tied, the usual asymptotic log-rank test may be inadequate in this setup. Therefore, a permutation test (via Monte-Carlo sampling) was conducted in the original paper. The data are taken from Tables 1 and 2 of Grana et al. (2002).
C. Grana, M. Chinol, C. Robertson, C. Mazzetta, M. Bartolomei, C. De Cicco, M. Fiorenza, M. Gatti, P. Caliceti & G. Paganelli (2002), Pretargeted adjuvant radioimmunotherapy with Yttrium-90-biotin in malignant glioma patients: A pilot study. British Journal of Cancer, 86(2), 207–212.
data(glioma) if(require(survival, quietly = TRUE)) { par(mfrow=c(1,2)) # Grade III glioma g3 <- glioma[glioma$Histology == "Grade3",] # Plot Kaplan-Meier curves plot(survfit(Surv(Survival, Cens) ~ Group, data=g3), main="Grade III Glioma", lty=c(2,1), legend.text=c("Control", "Treated"), legend.bty=1, ylab="Probability", xlab="Survival Time in Month") # log-rank test survdiff(Surv(Survival, Cens) ~ Group, data=g3) # permutation test with integer valued log-rank scores lsc <- cscores(Surv(g3$Survival, g3$Cens), int=TRUE) perm.test(lsc ~ Group, data=g3) # permutation test with real valued log-rank scores lsc <- cscores(Surv(g3$Survival, g3$Cens), int=FALSE) tr <- (g3$Group == "RIT") T <- sum(lsc[tr]) pperm(T, lsc, sum(tr), alternative="tw") pperm(T, lsc, sum(tr), alternative="tw", simulate=TRUE) # Grade IV glioma gbm <- glioma[glioma$Histology == "GBM",] # Plot Kaplan-Meier curves plot(survfit(Surv(Survival, Cens) ~ Group, data=gbm), main="Grade IV Glioma", lty=c(2,1), legend.text=c("Control", "Treated"), legend.bty=1, legend.pos=1, ylab="Probability", xlab="Survival Time in Month") # log-rank test survdiff(Surv(Survival, Cens) ~ Group, data=gbm) # permutation test with integer valued log-rank scores lsc <- cscores(Surv(gbm$Survival, gbm$Cens), int=TRUE) perm.test(lsc ~ Group, data=gbm) # permutation test with real valued log-rank scores lsc <- cscores(Surv(gbm$Survival, gbm$Cens), int=FALSE) tr <- (gbm$Group == "RIT") T <- sum(lsc[tr]) pperm(T, lsc, sum(tr), alternative="tw") pperm(T, lsc, sum(tr), alternative="tw", simulate=TRUE) }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.