exdqlmISVB | R Documentation |
The function applies an Importance Sampling Variational Bayes (ISVB) algorithm to estimate the posterior of an exDQLM.
exdqlmISVB(
y,
p0,
model,
df,
dim.df,
fix.gamma = FALSE,
gam.init = NA,
fix.sigma = TRUE,
sig.init = NA,
dqlm.ind = FALSE,
exps0,
tol = 0.1,
n.IS = 500,
n.samp = 200,
PriorSigma = NULL,
PriorGamma = NULL,
verbose = TRUE
)
y |
A univariate time-series. |
p0 |
The quantile of interest, a value between 0 and 1. |
model |
List of the state-space model including 'GG', 'FF', prior parameters 'm0' and 'C0'. |
df |
Discount factors for each block. |
dim.df |
Dimension of each block of discount factors. |
fix.gamma |
Logical value indicating whether to fix gamma at 'gam.init'. Default is 'FALSE'. |
gam.init |
Initial value for gamma (skewness parameter), or value at which gamma will be fixed if 'fix.gamma=TRUE'. |
fix.sigma |
Logical value indicating whether to fix sigma at 'sig.init'. Default is 'TRUE'. |
sig.init |
Initial value for sigma (scale parameter), or value at which sigma will be fixed if 'fix.sigma=TRUE'. |
dqlm.ind |
Logical value indicating whether to fix gamma at '0', reducing the exDQLM to the special case of the DQLM. Default is 'FALSE'. |
exps0 |
Initial value for dynamic quantile. If 'exps0' is not specified, it is set to the DLM estimate of the 'p0' quantile. |
tol |
Tolerance for convergence of dynamic quantile estimates. Default is 'tol=0.1'. |
n.IS |
Number of particles for the importance sampling of joint variational distribution of sigma and gamma. Default is 'n.IS=500'. |
n.samp |
Number of samples to draw from the approximated posterior distribution. Default is 'n.samp=200'. |
PriorSigma |
List of parameters for inverse gamma prior on sigma; shape 'a_sig' and scale 'b_sig'. Default is an inverse gamma with mean 1 (or 'sig.init' if provided) and variance 10. |
PriorGamma |
List of parameters for truncated student-t prior on gamma; center 'm_gam', scale 's_gam' and degrees of freedom 'df_gam'. Default is a standard student-t with 1 degree of freedom, truncated to the support of gamma. |
verbose |
Logical value indicating whether progress should be displayed. |
A list of the following is returned:
'run.time' - Algorithm run time in seconds.
'iter' - Number of iterations until convergence was reached.
'dqlm.ind' - Logical value indicating whether gamma was fixed at '0', reducing the exDQLM to the special case of the DQLM.
'model' - List of the state-space model including 'GG', 'FF', prior parameters 'm0' and 'C0'.
'p0' - The quantile which was estimated.
'df' - Discount factors used for each block.
'dim.df' - Dimension used for each block of discount factors.
'sig.init' - Initial value for sigma, or value at which sigma was fixed if 'fix.sigma=TRUE'.
'seq.sigma' - Sequence of sigma estimated by the algorithm until convergence.
'samp.theta' - Posterior sample of the state vector variational distribution.
'samp.post.pred' - Sample of the posterior predictive distributions.
'map.standard.forecast.errors' - MAP standardized one-step-ahead forecast errors.
'samp.sigma' - Posterior sample of scale parameter sigma variational distribution.
'samp.vts' - Posterior sample of latent parameters, v_t, variational distributions.
'theta.out' - List containing the variational distribution of the state vector including filtered distribution parameters ('fm' and 'fC') and smoothed distribution parameters ('sm' and 'sC').
'vts.out' - List containing the variational distributions of latent parameters v_t.
If 'dqlm.ind=FALSE', the list also contains:
'gam.init' - Initial value for gamma, or value at which gamma was fixed if 'fix.gamma=TRUE'.
'seq.gamma' - Sequence of gamma estimated by the algorithm until convergence.
'samp.gamma' - Posterior sample of skewness parameter gamma variational distribution.
'samp.sts' - Posterior sample of latent parameters, s_t, variational distributions.
'gammasig.out' - List containing the IS estimate of the variational distribution of sigma and gamma.
'sts.out' - List containing the variational distributions of latent parameters s_t.
Or if 'dqlm.ind=TRUE', the list also contains:
'sig.out' - List containing the IS estimate of the variational distribution of sigma.
y = scIVTmag[1:1095]
trend.comp = polytrendMod(1,mean(y),10)
seas.comp = seasMod(365,c(1,2,4),C0=10*diag(6))
model = combineMods(trend.comp,seas.comp)
M0 = exdqlmISVB(y,p0=0.85,model,df=c(1,1),dim.df = c(1,6),
gam.init=-3.5,sig.init=15,tol=0.05)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.