exdqlmMCMC | R Documentation |
The function applies a Markov chain Monte Carlo (MCMC) algorithm to sample the posterior of an exDQLM.
exdqlmMCMC(
y,
p0,
model,
df,
dim.df,
fix.gamma = FALSE,
gam.init = NA,
fix.sigma = FALSE,
sig.init = NA,
dqlm.ind = FALSE,
Sig.mh,
joint.sample = FALSE,
n.burn = 2000,
n.mcmc = 1500,
init.from.isvb = TRUE,
PriorSigma = NULL,
PriorGamma = NULL,
verbose = TRUE
)
y |
A univariate time-series. |
p0 |
The quantile of interest, a value between 0 and 1. |
model |
List of the state-space model including 'GG', 'FF', prior parameters 'm0' and 'C0'. |
df |
Discount factors for each block. |
dim.df |
Dimension of each block of discount factors. |
fix.gamma |
Logical value indicating whether to fix gamma at 'gam.init'. Default is 'FALSE'. |
gam.init |
Initial value for gamma (skewness parameter), or value at which gamma will be fixed if 'fix.gamma=TRUE'. |
fix.sigma |
Logical value indicating whether to fix sigma at 'sig.init'. Default is 'TRUE'. |
sig.init |
Initial value for sigma (scale parameter), or value at which sigma will be fixed if 'fix.sigma=TRUE'. |
dqlm.ind |
Logical value indicating whether to fix gamma at '0', reducing the exDQLM to the special case of the DQLM. Default is 'FALSE'. |
Sig.mh |
Covariance matrix used in the random walk MH step to jointly sample sigma and gamma. |
joint.sample |
Logical value indicating whether or not to recompute 'Sig.mh' based off the initial burn-in samples of gamma and sigma. Default is 'FALSE'. |
n.burn |
Number of MCMC iterations to burn. Default is 'n.burn = 2000'. |
n.mcmc |
Number of MCMC iterations to sample. Default is 'n.mcmc = 1500'. |
init.from.isvb |
Logical value indicating whether or not to initialize the MCMC using the ISVB algorithm. Default is 'TRUE'. |
PriorSigma |
List of parameters for inverse gamma prior on sigma; shape 'a_sig' and scale 'b_sig'. Default is an inverse gamma with mean 1 (or 'sig.init' if provided) and variance 10. |
PriorGamma |
List of parameters for truncated student-t prior on gamma; center 'm_gam', scale 's_gam' and degrees of freedom 'df_gam'. Default is a standard student-t with 1 degree of freedom, truncated to the support of gamma. |
verbose |
Logical value indicating whether progress should be displayed. |
A list of the following is returned:
'run.time' - Algorithm run time in seconds.
'model' - List of the state-space model including 'GG', 'FF', prior parameters 'm0' and 'C0'.
'p0' - The quantile which was estimated.
'df' - Discount factors used for each block.
'dim.df' - Dimension used for each block of discount factors.
'samp.theta' - Posterior sample of the state vector.
'samp.post.pred' - Sample of the posterior predictive distributions.
'map.standard.forecast.errors' - MAP standardized one-step-ahead forecast errors.
'samp.sigma' - Posterior sample of scale parameter sigma.
'samp.vts' - Posterior sample of latent parameters, v_t.
'theta.out' - List containing the distributions of the state vector including filtered distribution parameters ('fm' and 'fC') and smoothed distribution parameters ('sm' and 'sC').
If 'dqlm.ind=FALSE', the list also contains the following:
'samp.gamma' - Posterior sample of skewness parameter gamma.
'samp.sts' - Posterior sample of latent parameters, s_t.
'init.log.sigma' - Burned samples of log sigma from the random walk MH joint sampling of sigma and gamma.
'init.logit.gamma' - Burned samples of logit gamma from the random walk MH joint sampling of sigma and gamma.
'accept.rate' - Acceptance rate of the MH step.
'Sig.mh' - Covariance matrix used in MH step to jointly sample sigma and gamma.
y = scIVTmag[1:100]
trend.comp = polytrendMod(1,mean(y),10)
seas.comp = seasMod(365,c(1,2,4),C0=10*diag(6))
model = combineMods(trend.comp,seas.comp)
M2 = exdqlmMCMC(y,p0=0.85,model,df=c(1,1),dim.df = c(1,6),
gam.init=-3.5,sig.init=15,
n.burn=100,n.mcmc=150)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.