test_respca | R Documentation |
runs a principal component analysis (PCA) on the residuals of the rasch model.
test_respca(
items = NULL,
dset = NULL,
na.rm = TRUE,
model = NULL,
p.par = NULL,
modelType = NULL,
max_contrast = 1.5,
estimation_param = NULL
)
items |
a numeric vector containing the index numbers of the items in dset that are used to fit the model |
dset |
a data.frame containing the data |
na.rm |
a boolean value. If TRUE, all cases with any NA are removed (na.omit). If FALSE, only cases with full NA responses are removed |
model |
on object of a fit Rasch model, estimated with the packages 'eRm' (classes 'RM', 'PCM' or 'RSM'), 'psychotools' (classes raschmodel, 'pcmodel' or 'rsmodel') or 'pairwise' (class 'pers'), matching the value of modelType. If 'model' is provided, this model is used. If NULL, a model is fit using 'dset' and 'items'. |
p.par |
a person parameter object matching the class of 'model'. If NULL, the person parameters will be estimated. |
modelType |
a character value defining the rasch model to fit. Possible values: "RM", "PCM", "RSM". |
max_contrast |
a numeric value defining the maximum loading of a factor in the principal components analysis of the standardised residuals. |
estimation_param |
options for parameter estimation using estimation_control |
if the maximum eigenvalue of the contrasts of the pca is < max_contrast, a list containing 3 elements is returned: the item combination that was tested, a list of the class the model was estimated with (depending on modelType and estimation_param$est) with the fit model and a list with a person parameter object (depending on estimation_param$est). Else, NULL is returned.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.