Nothing
test_respca <- function(items=NULL,
dset=NULL,
na.rm=TRUE,
model=NULL,
p.par=NULL,
modelType=NULL,
max_contrast=1.5,
estimation_param=NULL){
# This is an internal function that is not intended to be called by users.
# It is nevertheless exported so that it can be run in the parallelization
# workers. However, the function is not documented in the manual.
#' runs a principal component analysis (PCA) on the residuals of the
#' rasch model.
#' @param items a numeric vector containing the index numbers of the items
#' in dset that are used to fit the model
#' @param dset a data.frame containing the data
#' @param na.rm a boolean value. If TRUE, all cases with any NA are removed
#' (na.omit). If FALSE, only cases with full NA responses are removed
#' @param model on object of a fit Rasch model, estimated with the packages
#' 'eRm' (classes 'RM', 'PCM' or 'RSM'), 'psychotools' (classes raschmodel,
#' 'pcmodel' or 'rsmodel') or 'pairwise' (class 'pers'), matching the value of
#' modelType. If 'model' is provided, this model is used. If NULL, a model is
#' fit using 'dset' and 'items'.
#' @param p.par a person parameter object matching the class of 'model'. If
#' NULL, the person parameters will be estimated.
#' @param modelType a character value defining the rasch model to fit.
#' Possible values: "RM", "PCM", "RSM".
#' @param max_contrast a numeric value defining the maximum loading of a
#' factor in the principal components analysis of the standardised residuals.
#' @param estimation_param options for parameter estimation using
#' \link{estimation_control}
#' @return if the maximum eigenvalue of the contrasts of the pca
#' is < max_contrast, a list containing 3 elements is returned: the item
#' combination that was tested, a list of the class the model was estimated
#' with (depending on modelType and estimation_param$est) with the fit model
#' and a list with a person parameter object (depending on
#' estimation_param$est). Else, NULL is returned.
#' @export
#' @keywords internal
# This function implements one of the tests that are executed via the 'tests'
# argument of the exhaustive_tests() function. It is an internal function, a
# call by the user is not indicated. It is nevertheless exported in order to
# work in parallelization. However, it is not included in the package
# documentation (roxygen2 keyword 'internal').
if (inherits(items, "list")){
model <- items[[2]]
p.par <- items[[3]]
items <- items[[1]]
}
ds_test <- dset[items]
if (is.null(model)){
if (na.rm==TRUE){ds_test<- stats::na.omit(ds_test)
} else{ds_test <- ds_test[rowSums(is.na(ds_test)) < ncol(ds_test)-1, ]}
#}), silent=TRUE)
model <- fit_rasch(X=ds_test, modelType=modelType,
estimation_param=estimation_param)
}
### get person parameter object if not already existing
if (!is.null(model) & is.null(p.par)){
if (estimation_param$est=="pairwise"){
p.par <- pairwise::pers(model)
} else if (estimation_param$est=="eRm"){
try(suppressWarnings({
p.par <- eRm::person.parameter(model)
}), silent=TRUE)
} else{ # psychotools
p.par <- ppar.psy(model)
}
}
### get std. residuals
if (!is.null(p.par)){
if (estimation_param$est=="pairwise"){
res <- residuals.pers(p.par, res="stdr") # change to pairwise:: as soon as
# the package exports that
# function
} else if (estimation_param$est=="eRm"){
res <- eRm::itemfit(p.par)$st.res
} else{ # psychotools
res <- ppar.psy(model)$residuals$res_std
}
}
if(!is.null(p.par)){
pca <- psych::pca(res, nfactors = length(items), rotate = "none")
if (max(pca$values<max_contrast)){
return(list(items, model, p.par))
}
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.