Nothing
#' Calculate residuals for flexible survival models
#'
#' Calculates residuals for \code{\link{flexsurvreg}} or \code{\link{flexsurvspline}} model fits.
#'
#' @param object Output from \code{\link{flexsurvreg}} or \code{\link{flexsurvspline}}, representing a fitted survival model object.
#'
#' @param type Character string for the type of residual desired. Currently only \code{"response"} and \code{"coxsnell"} are supported. More residual types may become available in future versions.
#'
#' @param ... Not currently used.
#'
#' @details Residuals of \code{type = "response"} are calculated as the naive difference between the observed survival and the covariate-specific predicted mean survival from \code{\link{predict.flexsurvreg}}, ignoring whether the event time is observed or censored.
#'
#' \code{type="coxsnell"} returns the Cox-Snell residual, defined as the estimated cumulative hazard at each data point. To check the fit of the
#' A more fully featured utility for this is provided in the function \code{\link{coxsnell_flexsurvreg}}.
#'
#' @return Numeric vector with the same length as \code{nobs(object)}.
#'
#' @seealso \code{\link{predict.flexsurvreg}}
#'
#' @importFrom stats residuals
#'
#'
#' @examples
#'
#' fitg <- flexsurvreg(formula = Surv(futime, fustat) ~ age, data = ovarian, dist = "gengamma")
#' residuals(fitg, type="response")
#'
#'
#' @noRd
residuals.flexsurvreg <- function(object, type = "response", ...)
{
type <- match.arg(type, c("response","coxsnell"))
if (type=="response"){
obs_surv <- unname(object$data$Y[, 1])
fit_surv <- predict(object, type = type)$.pred_time
res <- obs_surv - fit_surv
} else if (type=="coxsnell") {
cx <- coxsnell_flexsurvreg(object)
res <- cx$est
}
res
}
##' Cox-Snell residuals from a parametric survival model
##'
##' @param x Object returned by \code{\link{flexsurvreg}} or \code{\link{flexsurvspline}} representing a fitted survival model
##'
##' @return A data frame with a column called \code{est} giving the Cox-Snell residual, defined as the fitted cumulative hazard at each data point.
##' fitted cumulative hazard at the given observed data point, and other columns indicating the observation time,
##' observed event status, and covariate values defining the data at this point.
##'
##' The cumulative hazards \code{est} should form a censored sample from an Exponential(1).
##' Therefore to check the fit of the model, plot a nonparametric estimate of the cumulative
##' hazard curve against a diagonal line through the origin, which is the theoretical cumulative
##' hazard trajectory of the Exponential(1).
##'
##' @examples
##'
##' fitg <- expertsurv:::flexsurvreg(formula = Surv(futime, fustat) ~ age, data = ovarian, dist = "gengamma")
##' cs <- expertsurv:::coxsnell_flexsurvreg(fitg)
##'
##' ## Model appears to fit well, with some small sample noise
##' surv <- survfit(Surv(cs$est, ovarian$fustat) ~ 1)
##' plot(surv, fun="cumhaz")
##' abline(0, 1, col="red")
##'
##' @noRd
coxsnell_flexsurvreg <- function(x){
mf <- model.frame(x, orig=TRUE)
startstop <- "start" %in% colnames(mf[,1])
tind <- if (startstop) "stop" else "time"
t <- mf[,1][,tind]
start <- if (startstop) mf[,1][,"start"] else 0
covnames <- attr(model.frame(x), "covnames")
nd <- mf[,covnames,drop=FALSE]
res <- summary(x, type="cumhaz", t=t, start=start, newdata=nd, cross=FALSE,
ci=FALSE, se=FALSE, tidy=TRUE)
res$status <- mf[,1][,"status"]
res <- res[c("time","status", setdiff(names(res), c("time","status","est")), "est")]
res
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.