Description Usage Arguments Details Value Author(s) References Examples
View source: R/kimber.exp.test.R
Performs Kimber-Michael test for the composite hypothesis of exponentiality, see e.g. Michael (1983), Kimber (1985).
1  | kimber.exp.test(x, nrepl=2000)
 | 
x | 
 a numeric vector of data values.  | 
nrepl | 
 the number of replications in Monte Carlo simulation.  | 
The Kimber-Michael test for exponentiality is based on the following statistic:
D = \max_i{≤ft| r_i - s_i\right|},
where
s_i = \frac{2}{π} \, \arcsin{√{1-\exp(-X_{(i)}/\overline{X})}}, \qquad r_i = \frac{2}{π} \, \arcsin{√{(i - 0.5)/n}}.
The p-value is computed by Monte Carlo simulation.
A list with class "htest" containing the following components:
statistic | 
 the value of the Kimber-Michael statistic.  | 
p.value  | 
 the p-value for the test.  | 
method | 
 the character string "Kimber-Michael test for exponentiality".  | 
data.name | 
 a character string giving the name(s) of the data.  | 
Alexey Novikov and Ruslan Pusev
Kimber, A.C. (1985): Tests for the exponential, Weibull and Gumbel distributions based on the stabilized probability plot. — Biometrika, vol. 72, pp. 661–663.
Michael, J.R. (1983): The stabilized probability plot. — Biometrika, vol. 70, pp. 11–17.
1 2  | kimber.exp.test(rexp(100))
kimber.exp.test(rchisq(100,2))
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.