Description Usage Arguments Details Value Author(s) References Examples
View source: R/kochar.exp.test.R
Performs Kochar test for the composite hypothesis of exponentiality, see e.g. Kochar (1985).
1  | kochar.exp.test(x, simulate.p.value=FALSE, nrepl=2000)
 | 
x | 
 a numeric vector of data values.  | 
simulate.p.value | 
 a logical value indicating whether to compute p-values by Monte Carlo simulation.  | 
nrepl | 
 the number of replications in Monte Carlo simulation.  | 
The Kochar test for exponentiality is based on the following statistic:
T = √{\frac{108n}{17}}\frac{∑_{i=1}^n{J(i/(n+1))X_{(i)}}}{∑_{i=1}^n{X_i}},
where
J(u) = 2(1-u)[1-\log{(1-u)}] - 1.
The statistic T is asymptotically standard normal.
A list with class "htest" containing the following components:
statistic | 
 the value of the Kochar statistic.  | 
p.value  | 
 the p-value for the test.  | 
method | 
 the character string "Kochar test for exponentiality".  | 
data.name | 
 a character string giving the name(s) of the data.  | 
Alexey Novikov and Ruslan Pusev
Kochar, S.C. (1985): Testing exponenttality against monotone failure rate average. — Communications in Statistics – Theory and Methods, vol. 14, pp. 381–392.
1 2  | kochar.exp.test(rexp(100))
kochar.exp.test(rchisq(100,1))
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.